Cargando…

Sensorimotor Robotic Measures of tDCS- and HD-tDCS-Enhanced Motor Learning in Children

Transcranial direct-current stimulation (tDCS) enhances motor learning in adults. We have demonstrated that anodal tDCS and high-definition (HD) tDCS of the motor cortex can enhance motor skill acquisition in children, but behavioral mechanisms remain unknown. Robotics can objectively quantify compl...

Descripción completa

Detalles Bibliográficos
Autores principales: Cole, Lauran, Dukelow, Sean P., Giuffre, Adrianna, Nettel-Aguirre, Alberto, Metzler, Megan J., Kirton, Adam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6312578/
https://www.ncbi.nlm.nih.gov/pubmed/30662456
http://dx.doi.org/10.1155/2018/5317405
Descripción
Sumario:Transcranial direct-current stimulation (tDCS) enhances motor learning in adults. We have demonstrated that anodal tDCS and high-definition (HD) tDCS of the motor cortex can enhance motor skill acquisition in children, but behavioral mechanisms remain unknown. Robotics can objectively quantify complex sensorimotor functions to better understand mechanisms of motor learning. We aimed to characterize changes in sensorimotor function induced by tDCS and HD-tDCS paired motor learning in children within an interventional trial. Healthy, right-handed children (12–18 y) were randomized to anodal tDCS, HD-tDCS, or sham targeting the right primary motor cortex during left-hand Purdue pegboard test (PPT) training over five consecutive days. A KINARM robotic protocol quantifying proprioception, kinesthesia, visually guided reaching, and an object hit task was completed at baseline, posttraining, and six weeks later. Effects of the treatment group and training on changes in sensorimotor parameters were explored. Twenty-four children (median 15.5 years, 52% female) completed all measures. Compared to sham, both tDCS and HD-tDCS demonstrated enhanced motor learning with medium effect sizes. At baseline, multiple KINARM measures correlated with PPT performance. Following training, visually guided reaching in all groups was faster and required less corrective movements in the trained arm (H(2) = 9.250, p = 0.010). Aspects of kinesthesia including initial direction error improved across groups with sustained effects at follow-up (H(2) = 9.000, p = 0.011). No changes with training or stimulation were observed for position sense. For the object hit task, the HD-tDCS group moved more quickly with the right hand compared to sham at posttraining (χ (2)(2) = 6.255, p = 0.044). Robotics can quantify complex sensorimotor function within neuromodulator motor learning trials in children. Correlations with PPT performance suggest that KINARM metrics can assess motor learning effects. Understanding how tDCS and HD-tDCS enhance motor learning may be improved with robotic outcomes though specific mechanisms remain to be defined. Exploring mechanisms of neuromodulation may advance therapeutic approaches in children with cerebral palsy and other disabilities.