Cargando…

Prenatal Exposure to Antipsychotics Disrupts the Plasticity of Dentate Neurons and Memory in Adult Male Mice

BACKGROUND: With the growing use of second-generation antipsychotics for the treatment of a spectrum of psychiatric illnesses in pregnancy, concerns have been raised about the long-term impact of these medications on offspring neurodevelopment. However, preclinical and clinical evidence on the lasti...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Han, Li, Ji-Tao, Zhang, Yue, Liu, Rui, Wang, Xiao-Dong, Si, Tian-Mei, Su, Yun-Ai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6313132/
https://www.ncbi.nlm.nih.gov/pubmed/30169628
http://dx.doi.org/10.1093/ijnp/pyy073
Descripción
Sumario:BACKGROUND: With the growing use of second-generation antipsychotics for the treatment of a spectrum of psychiatric illnesses in pregnancy, concerns have been raised about the long-term impact of these medications on offspring neurodevelopment. However, preclinical and clinical evidence on the lasting effects of prenatal antipsychotic exposure is still sparse. METHODS: Risperidone, a widely used second-generation antipsychotic, and haloperidol, a representative first-generation antipsychotic, were administered to pregnant C57BL/6N mice from embryonic day 6 to 16. Behavioral tests, immunohistochemical staining, Golgi-Cox technique, and western blot were used to determine the effects of prenatal antipsychotic exposure on the plasticity of the dentate gyrus and related behavior in adult male mice. RESULTS: Both prenatal haloperidol- and risperidone-exposed mice showed recognition memory deficits but had no anxiety-related behavior. In addition, both prenatal haloperidol and risperidone exposure impaired the proliferation and maturation of adult-born dentate granule cells. We found that haloperidol exposure decreased dendritic length of dentate granule cells, while risperidone had no effect. However, both drugs inhibited dendrite branching in granule cells. Haloperidol exposure also significantly reduced total spine density in the middle dendritic segment of dentate gyrus. Prenatally risperidone-exposed mice only displayed a loss in thin and mushroom spines of infrapyramidal blade of dentate gyrus. Collectively, prenatal haloperidol exposure exerted more robust negative effects than risperidone. CONCLUSION: These data provide evidence for the long-term programming effects of early-life exposure to antipsychotics on hippocampal plasticity and behavior.