Cargando…
Effect of modulation of epithelial-mesenchymal transition regulators Snail1 and Snail2 on cancer cell radiosensitivity by targeting of the cell cycle, cell apoptosis and cell migration/invasion
Cancer is one of the leading causes of cancer-associated mortality worldwide. Several strategies of treatment, including radiotherapy, have been developed and used to treat this disease. However, post-treatment metastasis and resistance to treatment are two major causes for the limited effectiveness...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6313178/ https://www.ncbi.nlm.nih.gov/pubmed/30655734 http://dx.doi.org/10.3892/ol.2018.9636 |
Sumario: | Cancer is one of the leading causes of cancer-associated mortality worldwide. Several strategies of treatment, including radiotherapy, have been developed and used to treat this disease. However, post-treatment metastasis and resistance to treatment are two major causes for the limited effectiveness of radiotherapy in cancer patients. Epithelial-mesenchymal transition (EMT) is regulated by SNAIL family transcription factors, including Snail1 and Snail2 (Slug), and serves important roles in progression and cancer resistance to treatment. Snail1 and Slug also have been shown to be implicated in cancer treatment resistance. For resolving the resistance to treatment problems, combining the modulation of gene expression with radiotherapy is a novel strategy to treat patients with cancer. The present review focuses on the effect of Snail1 and Slug on cancer radiosensitivity by targeting cell apoptosis, the cell cycle and cell migration/invasion. |
---|