Cargando…
COX6B1 relieves hypoxia/reoxygenation injury of neonatal rat cardiomyocytes by regulating mitochondrial function
OBJECTIVE: Mitochondrial dysfunction plays a pivotal role in various pathophysiological processes of heart. Cytochrome oxidase subunit 6B1 (COX6B1) is a subunit of cytochrome oxidase. METHODS: Cardiomyocytes were isolated from neonatal SD rats (within 24 h of birth) by repeating digestion of collage...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6313357/ https://www.ncbi.nlm.nih.gov/pubmed/30311029 http://dx.doi.org/10.1007/s10529-018-2614-4 |
Sumario: | OBJECTIVE: Mitochondrial dysfunction plays a pivotal role in various pathophysiological processes of heart. Cytochrome oxidase subunit 6B1 (COX6B1) is a subunit of cytochrome oxidase. METHODS: Cardiomyocytes were isolated from neonatal SD rats (within 24 h of birth) by repeating digestion of collagenase and trypsin. COX6B1 over-expression and hypoxia/reoxygenation was conducted on neonatal rat cardiomyocytes. Cell viability, apoptosis rates, mitochondria membrane potential and mitochondrial permeabilization transition pores (mPTPs) were then determined respectively by Cell performing Counting Kit-8 (CCK-8), Annexin-V/PI assay, JC-1 assay, mPTP assay. The expression of cyto C and apoptosis-related factors were detected by RT-Qpcr and Western blot. RESULTS: Hypoxia/reoxygenation increased apoptosis and mPTP levels, and decreased mitochondria membrane potential in I/R and I/R + EV groups. COX6B1 over-expression increased mitochondria cyto C, pro-caspase-3, pro-caspase-9 and bcl-2, while it decreased cytosol cyto C, cleaved-caspase-3, cleaved-caspase-9 and bax compared to I/R + EV group. CONCLUSION: COX6B1 protected cardiomyocytes from hypoxia/reoxygenation injury by reducing ROS production and cell apoptosis, during which reduction of the release of cytochrome C from mitochondria to cytosol was involved. Our study demonstrated that COX6B1 may be an candidate target gene in preventing hypoxia/reoxygenation injury of cardiomyocytes. |
---|