Cargando…

Injectivity and Stability for a Generic Class of Generalized Radon Transforms

Let (M, g) be an analytic, compact, Riemannian manifold with boundary, of dimension [Formula: see text] . We study a class of generalized Radon transforms, integrating over a family of hypersurfaces embedded in M, satisfying the Bolker condition (in: Quinto, Proceedings of conference “Seventy-five Y...

Descripción completa

Detalles Bibliográficos
Autores principales: Homan, Andrew, Zhou, Hanming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6313362/
https://www.ncbi.nlm.nih.gov/pubmed/30636856
http://dx.doi.org/10.1007/s12220-016-9729-4
Descripción
Sumario:Let (M, g) be an analytic, compact, Riemannian manifold with boundary, of dimension [Formula: see text] . We study a class of generalized Radon transforms, integrating over a family of hypersurfaces embedded in M, satisfying the Bolker condition (in: Quinto, Proceedings of conference “Seventy-five Years of Radon Transforms”, Hong Kong, 1994). Using analytic microlocal analysis, we prove a microlocal regularity theorem for generalized Radon transforms on analytic manifolds defined on an analytic family of hypersurfaces. We then show injectivity and stability for an open, dense subset of smooth generalized Radon transforms satisfying the Bolker condition, including the analytic ones.