Cargando…
Chronic Environmental and Occupational Lead Exposure and Kidney Function among African Americans: Dallas Lead Project II
Background: We examined the effects of lead on kidney function in occupationally and environmentally exposed adults from a Dallas lead smelter community that was the site of an Environmental Protection Agency (EPA) Superfund clean-up. All subjects were African Americans—a racial group that bears a d...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6313544/ https://www.ncbi.nlm.nih.gov/pubmed/30558242 http://dx.doi.org/10.3390/ijerph15122875 |
Sumario: | Background: We examined the effects of lead on kidney function in occupationally and environmentally exposed adults from a Dallas lead smelter community that was the site of an Environmental Protection Agency (EPA) Superfund clean-up. All subjects were African Americans—a racial group that bears a disproportionate burden of kidney disease. Methods: A two-phase health screening was conducted. Phase II included a physical examination and laboratory tests. Study subjects were African Americans residents, aged ≥19 years to ≤89 years. Of 778 subjects, 726 were environmentally exposed and 52 were both occupationally and environmentally exposed. The effects of lead exposure on estimated glomerular filtration rate (eGFR) were examined in three groups: male and female smelter-community residents, as well as males with both occupational and environmental exposure. Multiple linear regression was used to analyze the dependence of eGFR on log (blood lead level), duration of residence in the community, type 2 diabetes, and hypertension. Results: There was a statistically significant negative effect on kidney function for all three groups. Comparison of female and male residents showed a slightly larger negative effect of blood lead level on eGFR in females versus males, with the largest effect seen in male smelter-working residents. For each unit increase (log(10) 10 µg/dL = 1) in blood lead level, age-adjusted eGFR was reduced 21.2 mL/min/1.73 m(2) in male residents, 25.3 mL/min/1.73 m(2) in female residents and 59.2 mL/min/1.73 m(2) in male smelter-working residents. Conclusions: Chronic lead exposure is associated with worsening kidney function in both African American male and female residents, as well as male workers in Dallas smelter communities. This effect is slightly, but not statistically significantly, worse in female residents than male residents, and significantly worse in males that both worked and resided in the smelter community. |
---|