Cargando…

Characterization of Environmental Health Inequalities Due to Polyaromatic Hydrocarbon Exposure in France

Reducing environmental health inequalities has become a major focus of public health efforts in France, as evidenced by the French action plans for health and the environment. To evaluate environmental inequalities, routine monitoring networks provide a valuable source of data on environmental conta...

Descripción completa

Detalles Bibliográficos
Autores principales: Ioannidou, Despoina, Malherbe, Laure, Beauchamp, Maxime, Saby, Nicolas P.A., Bonnard, Roseline, Caudeville, Julien
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6313573/
https://www.ncbi.nlm.nih.gov/pubmed/30487416
http://dx.doi.org/10.3390/ijerph15122680
Descripción
Sumario:Reducing environmental health inequalities has become a major focus of public health efforts in France, as evidenced by the French action plans for health and the environment. To evaluate environmental inequalities, routine monitoring networks provide a valuable source of data on environmental contamination, which can be used in integrated assessments, to identify overexposed populations and prioritize actions. However, available databases generally do not meet sufficient spatial representativeness to characterize population exposure, as they are usually not assembled for this specific purpose. The aim of this study was to develop geoprocessing procedures and statistical methods to build spatial environmental variables (water, air, soil, and food pollutant concentrations) at a fine resolution, and provide appropriate input for the exposure modelling. Those methods were designed to combine in situ monitoring data with correlated auxiliary information (for example, atmospheric emissions, population, and altitude), in order to better represent the variability of the environmental compartment quality. The MODUL’ERS multimedia exposure model developed by INERIS (French Institute for industrial Environment and Risks) was then used to assess the transfer of substances from the environment to humans, through inhalation and ingestion pathway characterization. We applied the methodology to a carcinogenic Polycyclic Aromatic Hydrocarbon substance, benzo[a]pyrene(B[a]P), to map spatialized exposure indicators, at the national scale. The largest environmental contribution corresponded to the ingestion pathway. Data processing algorithms and calculation of exposure will be integrated into the French coordinated integrated environment and health platform PLAINE (PLteforme intégrée d’Analyse des INégalités Environnementales) which has been developed to map and analyze environmental health inequalities.