Cargando…
Armillaria Root-Rot Pathogens: Species Boundaries and Global Distribution
This review considers current knowledge surrounding species boundaries of the Armillaria root-rot pathogens and their distribution. In addition, a phylogenetic tree using translation elongation factor subunit 1-alpha (tef-1α) from isolates across the globe are used to present a global phylogenetic f...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6313743/ https://www.ncbi.nlm.nih.gov/pubmed/30356027 http://dx.doi.org/10.3390/pathogens7040083 |
Sumario: | This review considers current knowledge surrounding species boundaries of the Armillaria root-rot pathogens and their distribution. In addition, a phylogenetic tree using translation elongation factor subunit 1-alpha (tef-1α) from isolates across the globe are used to present a global phylogenetic framework for the genus. Defining species boundaries based on DNA sequence-inferred phylogenies has been a central focus of contemporary mycology. The results of such studies have in many cases resolved the biogeographic history of species, mechanisms involved in dispersal, the taxonomy of species and how certain phenotypic characteristics have evolved throughout lineage diversification. Such advances have also occurred in the case of Armillaria spp. that include important causal agents of tree root rots. This commenced with the first phylogeny for Armillaria that was based on IGS-1 (intergenic spacer region one) DNA sequence data, published in 1992. Since then phylogenies were produced using alternative loci, either as single gene phylogenies or based on concatenated data. Collectively these phylogenies revealed species clusters in Armillaria linked to their geographic distributions and importantly species complexes that warrant further research. |
---|