Cargando…

Granulin 1 Promotes Retinal Regeneration in Zebrafish

PURPOSE: Retinal degenerative diseases can progress to severe reductions of vision. In general, the changes are permanent in higher vertebrates, including humans; however, retinal regeneration can occur in lower vertebrates, such as amphibians and teleost fish. Progranulin is a secreted growth facto...

Descripción completa

Detalles Bibliográficos
Autores principales: Tsuruma, Kazuhiro, Saito, Yuichi, Okuyoshi, Hiroyuki, Yamaguchi, Akihiro, Shimazawa, Masamitsu, Goldman, Daniel, Hara, Hideaki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Association for Research in Vision and Ophthalmology 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6314112/
https://www.ncbi.nlm.nih.gov/pubmed/30577041
http://dx.doi.org/10.1167/iovs.18-24828
_version_ 1783384073277800448
author Tsuruma, Kazuhiro
Saito, Yuichi
Okuyoshi, Hiroyuki
Yamaguchi, Akihiro
Shimazawa, Masamitsu
Goldman, Daniel
Hara, Hideaki
author_facet Tsuruma, Kazuhiro
Saito, Yuichi
Okuyoshi, Hiroyuki
Yamaguchi, Akihiro
Shimazawa, Masamitsu
Goldman, Daniel
Hara, Hideaki
author_sort Tsuruma, Kazuhiro
collection PubMed
description PURPOSE: Retinal degenerative diseases can progress to severe reductions of vision. In general, the changes are permanent in higher vertebrates, including humans; however, retinal regeneration can occur in lower vertebrates, such as amphibians and teleost fish. Progranulin is a secreted growth factor that is involved in normal development and wound-healing processes. We have shown that progranulin promotes the proliferation of retinal precursor cells in mouse retinas. The purpose of this study was to investigate the role played by granulin 1 (grn1) in the retinal regeneration in zebrafish. METHODS: We injured the retina of zebrafish with needle puncturing, and the retinas were examined at different times after the injury. We also checked the proliferation and the expression of retinal regeneration–related genes after knockdown of grn1 by electroporation with morpholino oligonucleotides (MO) and intravitreal injection of recombinant grn1. RESULTS: Our results showed that the level of grn1 was highly increased after retinal injury, and it was expressed in various types of retinal cells. A knockdown of grn1 reduced the proliferation of Müller glial cells in zebrafish eyes undergoing retinal regeneration. The knockdown of grn1 also reduced the expression of achaete-scute homolog 1a (ascl1a), an important factor in retinal regeneration. An intravitreal injection of recombinant grn1 led to a proliferation of Müller glial cells and an increase in the expression of retinal regeneration–related genes, such as ascl1a and lin28. CONCLUSIONS: These findings suggested that grn1 should be considered as a target for stimulating the dedifferentiation of Müller glial cells and retinal regeneration.
format Online
Article
Text
id pubmed-6314112
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher The Association for Research in Vision and Ophthalmology
record_format MEDLINE/PubMed
spelling pubmed-63141122019-01-07 Granulin 1 Promotes Retinal Regeneration in Zebrafish Tsuruma, Kazuhiro Saito, Yuichi Okuyoshi, Hiroyuki Yamaguchi, Akihiro Shimazawa, Masamitsu Goldman, Daniel Hara, Hideaki Invest Ophthalmol Vis Sci Retinal Cell Biology PURPOSE: Retinal degenerative diseases can progress to severe reductions of vision. In general, the changes are permanent in higher vertebrates, including humans; however, retinal regeneration can occur in lower vertebrates, such as amphibians and teleost fish. Progranulin is a secreted growth factor that is involved in normal development and wound-healing processes. We have shown that progranulin promotes the proliferation of retinal precursor cells in mouse retinas. The purpose of this study was to investigate the role played by granulin 1 (grn1) in the retinal regeneration in zebrafish. METHODS: We injured the retina of zebrafish with needle puncturing, and the retinas were examined at different times after the injury. We also checked the proliferation and the expression of retinal regeneration–related genes after knockdown of grn1 by electroporation with morpholino oligonucleotides (MO) and intravitreal injection of recombinant grn1. RESULTS: Our results showed that the level of grn1 was highly increased after retinal injury, and it was expressed in various types of retinal cells. A knockdown of grn1 reduced the proliferation of Müller glial cells in zebrafish eyes undergoing retinal regeneration. The knockdown of grn1 also reduced the expression of achaete-scute homolog 1a (ascl1a), an important factor in retinal regeneration. An intravitreal injection of recombinant grn1 led to a proliferation of Müller glial cells and an increase in the expression of retinal regeneration–related genes, such as ascl1a and lin28. CONCLUSIONS: These findings suggested that grn1 should be considered as a target for stimulating the dedifferentiation of Müller glial cells and retinal regeneration. The Association for Research in Vision and Ophthalmology 2018-12 /pmc/articles/PMC6314112/ /pubmed/30577041 http://dx.doi.org/10.1167/iovs.18-24828 Text en Copyright 2018 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
spellingShingle Retinal Cell Biology
Tsuruma, Kazuhiro
Saito, Yuichi
Okuyoshi, Hiroyuki
Yamaguchi, Akihiro
Shimazawa, Masamitsu
Goldman, Daniel
Hara, Hideaki
Granulin 1 Promotes Retinal Regeneration in Zebrafish
title Granulin 1 Promotes Retinal Regeneration in Zebrafish
title_full Granulin 1 Promotes Retinal Regeneration in Zebrafish
title_fullStr Granulin 1 Promotes Retinal Regeneration in Zebrafish
title_full_unstemmed Granulin 1 Promotes Retinal Regeneration in Zebrafish
title_short Granulin 1 Promotes Retinal Regeneration in Zebrafish
title_sort granulin 1 promotes retinal regeneration in zebrafish
topic Retinal Cell Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6314112/
https://www.ncbi.nlm.nih.gov/pubmed/30577041
http://dx.doi.org/10.1167/iovs.18-24828
work_keys_str_mv AT tsurumakazuhiro granulin1promotesretinalregenerationinzebrafish
AT saitoyuichi granulin1promotesretinalregenerationinzebrafish
AT okuyoshihiroyuki granulin1promotesretinalregenerationinzebrafish
AT yamaguchiakihiro granulin1promotesretinalregenerationinzebrafish
AT shimazawamasamitsu granulin1promotesretinalregenerationinzebrafish
AT goldmandaniel granulin1promotesretinalregenerationinzebrafish
AT harahideaki granulin1promotesretinalregenerationinzebrafish