Cargando…

Lysosomal oxidation of LDL alters lysosomal pH, induces senescence, and increases secretion of pro-inflammatory cytokines in human macrophages

We have shown that aggregated LDL is internalized by macrophages and oxidized in lysosomes by redox-active iron. We have now investigated to determine whether the lysosomal oxidation of LDL impairs lysosomal function and whether a lysosomotropic antioxidant can prevent these alterations. LDL aggrega...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahmad, Feroz, Leake, David S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society for Biochemistry and Molecular Biology 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6314264/
https://www.ncbi.nlm.nih.gov/pubmed/30397186
http://dx.doi.org/10.1194/jlr.M088245
Descripción
Sumario:We have shown that aggregated LDL is internalized by macrophages and oxidized in lysosomes by redox-active iron. We have now investigated to determine whether the lysosomal oxidation of LDL impairs lysosomal function and whether a lysosomotropic antioxidant can prevent these alterations. LDL aggregated by SMase (SMase-LDL) caused increased lysosomal lipid peroxidation in human monocyte-derived macrophages or THP-1 macrophage-like cells, as shown by a fluorescent probe, Foam-LPO. The pH of the lysosomes was increased considerably by lysosomal LDL oxidation as shown by LysoSensor Yellow/Blue and LysoTracker Red. SMase-LDL induced senescence-like properties in the cells as shown by β-galactosidase staining and levels of p53 and p21. Inflammation plays a key role in atherosclerosis. SMase-LDL treatment increased the lipopolysaccharide-induced secretion of TNF-α, IL-6, and MCP-1. The lysosomotropic antioxidant, cysteamine, inhibited all of the above changes. Targeting lysosomes with antioxidants, such as cysteamine, to prevent the intralysosomal oxidation of LDL might be a novel therapy for atherosclerosis.