Cargando…
A pedestrian approach to the invariant Gibbs measures for the 2-d defocusing nonlinear Schrödinger equations
We consider the defocusing nonlinear Schrödinger equations on the two-dimensional compact Riemannian manifold without boundary or a bounded domain in [Formula: see text] . Our aim is to give a pedagogic and self-contained presentation on the Wick renormalization in terms of the Hermite polynomials a...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6314278/ https://www.ncbi.nlm.nih.gov/pubmed/30637183 http://dx.doi.org/10.1007/s40072-018-0112-2 |
Sumario: | We consider the defocusing nonlinear Schrödinger equations on the two-dimensional compact Riemannian manifold without boundary or a bounded domain in [Formula: see text] . Our aim is to give a pedagogic and self-contained presentation on the Wick renormalization in terms of the Hermite polynomials and the Laguerre polynomials and construct the Gibbs measures corresponding to the Wick ordered Hamiltonian. Then, we construct global-in-time solutions with initial data distributed according to the Gibbs measure and show that the law of the random solutions, at any time, is again given by the Gibbs measure. |
---|