Cargando…
Identification of spatial expression trends in single-cell gene expression data
Methods for spatial gene expression analyses at single-cell resolution are becoming available, whereas computational strategies for spatial gene expression analyses are lacking. We present a computational method (trendsceek) based on marked point processes that identifies genes with significant spat...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6314435/ https://www.ncbi.nlm.nih.gov/pubmed/29553578 http://dx.doi.org/10.1038/nmeth.4634 |
_version_ | 1783384100615225344 |
---|---|
author | Edsgärd, Daniel Johnsson, Per Sandberg, Rickard |
author_facet | Edsgärd, Daniel Johnsson, Per Sandberg, Rickard |
author_sort | Edsgärd, Daniel |
collection | PubMed |
description | Methods for spatial gene expression analyses at single-cell resolution are becoming available, whereas computational strategies for spatial gene expression analyses are lacking. We present a computational method (trendsceek) based on marked point processes that identifies genes with significant spatial expression trends. Trendsceek identifies significant genes in spatial transcriptomics and sequential FISH data and also reveal significant gene expression gradients and hotspots in low-dimensional projections of dissociated single-cell RNA-seq data. |
format | Online Article Text |
id | pubmed-6314435 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
record_format | MEDLINE/PubMed |
spelling | pubmed-63144352019-01-02 Identification of spatial expression trends in single-cell gene expression data Edsgärd, Daniel Johnsson, Per Sandberg, Rickard Nat Methods Article Methods for spatial gene expression analyses at single-cell resolution are becoming available, whereas computational strategies for spatial gene expression analyses are lacking. We present a computational method (trendsceek) based on marked point processes that identifies genes with significant spatial expression trends. Trendsceek identifies significant genes in spatial transcriptomics and sequential FISH data and also reveal significant gene expression gradients and hotspots in low-dimensional projections of dissociated single-cell RNA-seq data. 2018-03-19 2018-05 /pmc/articles/PMC6314435/ /pubmed/29553578 http://dx.doi.org/10.1038/nmeth.4634 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Edsgärd, Daniel Johnsson, Per Sandberg, Rickard Identification of spatial expression trends in single-cell gene expression data |
title | Identification of spatial expression trends in single-cell gene expression data |
title_full | Identification of spatial expression trends in single-cell gene expression data |
title_fullStr | Identification of spatial expression trends in single-cell gene expression data |
title_full_unstemmed | Identification of spatial expression trends in single-cell gene expression data |
title_short | Identification of spatial expression trends in single-cell gene expression data |
title_sort | identification of spatial expression trends in single-cell gene expression data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6314435/ https://www.ncbi.nlm.nih.gov/pubmed/29553578 http://dx.doi.org/10.1038/nmeth.4634 |
work_keys_str_mv | AT edsgarddaniel identificationofspatialexpressiontrendsinsinglecellgeneexpressiondata AT johnssonper identificationofspatialexpressiontrendsinsinglecellgeneexpressiondata AT sandbergrickard identificationofspatialexpressiontrendsinsinglecellgeneexpressiondata |