Cargando…
Comparison of different human tissue processing methods for maximization of bacterial recovery
Tissues are valuable microbiological samples that have proved superiority over swabs. Culture of tissue samples is used in the diagnosis of a variety of infections. However, as well as factors such as the site of obtaining the sample, the number of samples, and previous antibiotic use, the method of...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6314997/ https://www.ncbi.nlm.nih.gov/pubmed/30357554 http://dx.doi.org/10.1007/s10096-018-3406-4 |
_version_ | 1783384185723944960 |
---|---|
author | Askar, Mohamed Ashraf, Waheed Scammell, Brigitte Bayston, Roger |
author_facet | Askar, Mohamed Ashraf, Waheed Scammell, Brigitte Bayston, Roger |
author_sort | Askar, Mohamed |
collection | PubMed |
description | Tissues are valuable microbiological samples that have proved superiority over swabs. Culture of tissue samples is used in the diagnosis of a variety of infections. However, as well as factors such as the site of obtaining the sample, the number of samples, and previous antibiotic use, the method of tissue processing may have an important effect on sensitivity. Data from the literature comparing different tissue processing methods is very limited. This study aimed to compare different mechanical and chemical methods of tissue processing in terms of efficacy and retaining the viability of the bacteria in the tissues. Standard suspensions of Staphylococcus aureus and Escherichia coli were prepared and treated differently to test the effect of that treatment on bacterial viability. Artificially inoculated pork tissue and known infected human tissue samples were then processed by different methods prior to culture, and results were compared. Percentages of reduction in the number of viable bacteria compared to the control by homogenization was similar to 5-min dithiothreitol treatment but significantly lower than bead beating. Bacterial recovery from homogenized human tissues was significantly higher than from any other method of treatment. Although bead beating could be the most efficient method in obtaining a homogeneous tissue product, it significantly reduces the number of viable bacteria within tissues. Homogenization offers the most effective easily controllable retrieval of bacteria from tissue and retains their viability. Guidelines for diagnosing infections using tissue samples should include a standardized processing method. |
format | Online Article Text |
id | pubmed-6314997 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-63149972019-01-11 Comparison of different human tissue processing methods for maximization of bacterial recovery Askar, Mohamed Ashraf, Waheed Scammell, Brigitte Bayston, Roger Eur J Clin Microbiol Infect Dis Original Article Tissues are valuable microbiological samples that have proved superiority over swabs. Culture of tissue samples is used in the diagnosis of a variety of infections. However, as well as factors such as the site of obtaining the sample, the number of samples, and previous antibiotic use, the method of tissue processing may have an important effect on sensitivity. Data from the literature comparing different tissue processing methods is very limited. This study aimed to compare different mechanical and chemical methods of tissue processing in terms of efficacy and retaining the viability of the bacteria in the tissues. Standard suspensions of Staphylococcus aureus and Escherichia coli were prepared and treated differently to test the effect of that treatment on bacterial viability. Artificially inoculated pork tissue and known infected human tissue samples were then processed by different methods prior to culture, and results were compared. Percentages of reduction in the number of viable bacteria compared to the control by homogenization was similar to 5-min dithiothreitol treatment but significantly lower than bead beating. Bacterial recovery from homogenized human tissues was significantly higher than from any other method of treatment. Although bead beating could be the most efficient method in obtaining a homogeneous tissue product, it significantly reduces the number of viable bacteria within tissues. Homogenization offers the most effective easily controllable retrieval of bacteria from tissue and retains their viability. Guidelines for diagnosing infections using tissue samples should include a standardized processing method. Springer Berlin Heidelberg 2018-10-24 2019 /pmc/articles/PMC6314997/ /pubmed/30357554 http://dx.doi.org/10.1007/s10096-018-3406-4 Text en © The Author(s) 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Original Article Askar, Mohamed Ashraf, Waheed Scammell, Brigitte Bayston, Roger Comparison of different human tissue processing methods for maximization of bacterial recovery |
title | Comparison of different human tissue processing methods for maximization of bacterial recovery |
title_full | Comparison of different human tissue processing methods for maximization of bacterial recovery |
title_fullStr | Comparison of different human tissue processing methods for maximization of bacterial recovery |
title_full_unstemmed | Comparison of different human tissue processing methods for maximization of bacterial recovery |
title_short | Comparison of different human tissue processing methods for maximization of bacterial recovery |
title_sort | comparison of different human tissue processing methods for maximization of bacterial recovery |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6314997/ https://www.ncbi.nlm.nih.gov/pubmed/30357554 http://dx.doi.org/10.1007/s10096-018-3406-4 |
work_keys_str_mv | AT askarmohamed comparisonofdifferenthumantissueprocessingmethodsformaximizationofbacterialrecovery AT ashrafwaheed comparisonofdifferenthumantissueprocessingmethodsformaximizationofbacterialrecovery AT scammellbrigitte comparisonofdifferenthumantissueprocessingmethodsformaximizationofbacterialrecovery AT baystonroger comparisonofdifferenthumantissueprocessingmethodsformaximizationofbacterialrecovery |