Cargando…

Dynamics of Chromatin and Transcription during Transient Depletion of the RSC Chromatin Remodeling Complex

Nucleosome organization has a key role in transcriptional regulation, yet the precise mechanisms establishing nucleosome locations and their effect on transcription are unclear. Here, we use an induced degradation system to screen all yeast ATP-dependent chromatin remodelers. We characterize how rap...

Descripción completa

Detalles Bibliográficos
Autores principales: Klein-Brill, Avital, Joseph-Strauss, Daphna, Appleboim, Alon, Friedman, Nir
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6315372/
https://www.ncbi.nlm.nih.gov/pubmed/30605682
http://dx.doi.org/10.1016/j.celrep.2018.12.020
Descripción
Sumario:Nucleosome organization has a key role in transcriptional regulation, yet the precise mechanisms establishing nucleosome locations and their effect on transcription are unclear. Here, we use an induced degradation system to screen all yeast ATP-dependent chromatin remodelers. We characterize how rapid clearance of the remodeler affects nucleosome locations. Specifically, depletion of Sth1, the catalytic subunit of the RSC (remodel the structure of chromatin) complex, leads to rapid fill-in of nucleosome-free regions at gene promoters. These changes are reversible upon reintroduction of Sth1 and do not depend on DNA replication. RSC-dependent nucleosome positioning is pivotal in maintaining promoters of lowly expressed genes free from nucleosomes. In contrast, we observe that upon acute stress, the RSC is not necessary for the transcriptional response. Moreover, RSC-dependent nucleosome positions are tightly related to usage of specific transcription start sites. Our results suggest organizational principles that determine nucleosome positions with and without RSC and how these interact with the transcriptional process.