Cargando…

Rapid Nanofabrication of Nanostructured Interdigitated Electrodes (nIDEs) for Long-Term In Vitro Analysis of Human Induced Pluripotent Stem Cell Differentiated Cardiomyocytes

Adverse cardiac events are a major cause of late-stage drug development withdrawals. Improved in vitro systems for predicting cardiotoxicity are of great interest to prevent these events and to reduce the expenses involved in the introduction of cardiac drugs into the marketplace. Interdigitated ele...

Descripción completa

Detalles Bibliográficos
Autores principales: Hart, Cacie, Kundu, Avra, Kumar, Kowsik, Varma, Sreekanth J., Thomas, Jayan, Rajaraman, Swaminathan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6315475/
https://www.ncbi.nlm.nih.gov/pubmed/30314279
http://dx.doi.org/10.3390/bios8040088
Descripción
Sumario:Adverse cardiac events are a major cause of late-stage drug development withdrawals. Improved in vitro systems for predicting cardiotoxicity are of great interest to prevent these events and to reduce the expenses involved in the introduction of cardiac drugs into the marketplace. Interdigitated electrodes (IDEs) affixed with a culture well provide a simple, suitable solution for in vitro analysis of cells because of their high sensitivity, ease of fabrication, and label-free, nondestructive analysis. Culturing human pluripotent stem cell differentiated cardiomyocytes onto these IDEs allows for the use of the IDE–cell combination in predictive toxicity assays. IDEs with smaller interdigitated distances allow for greater sensitivity, but typically require cleanroom fabrication. In this communication, we report the definition of a simple IDE geometry on a printed nanostructured substrate, demonstrate a Cellular Index (CI) increase from 0 to 7.7 for human cardiomyocytes, and a decrease in CI from 2.3 to 1 with increased concentration of the model drug, norepinephrine. The nanostructuring results in an increased sensitivity of our 1 mm pitch IDEs when compared to traditionally fabricated IDEs with a pitch of 10 μm (100 times larger electrode gap). The entire nanostructured IDE (nIDE) is fabricated and assembled in a rapid nanofabrication environment, thus allowing for iterative design changes and robust fabrication of devices.