Cargando…

Prospective Biomarkers from Plasma Metabolomics of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Implicate Redox Imbalance in Disease Symptomatology

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a disease of enigmatic origin with no established cure. Its constellation of symptoms has silently ruined the lives of millions of people around the world. A plethora of hypotheses have been vainly investigated over the past few decades,...

Descripción completa

Detalles Bibliográficos
Autores principales: Germain, Arnaud, Ruppert, David, Levine, Susan M., Hanson, Maureen R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6315598/
https://www.ncbi.nlm.nih.gov/pubmed/30563204
http://dx.doi.org/10.3390/metabo8040090
Descripción
Sumario:Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a disease of enigmatic origin with no established cure. Its constellation of symptoms has silently ruined the lives of millions of people around the world. A plethora of hypotheses have been vainly investigated over the past few decades, so that the biological basis of this debilitating condition remains a mystery. In this study, we investigate whether there is a disturbance in homeostasis of metabolic networks in the plasma of a female 32-patient cohort compared to 19 healthy female controls. Extensive analysis of the 832-metabolite dataset generated by Metabolon(®), covering eight biological classes, generated important insight into metabolic disruptions that occur in ME/CFS. We report on 14 metabolites with differences in abundance, allowing us to develop a theory of broad redox imbalance in ME/CFS patients, which is consistent with findings of prior work in the ME/CFS field. Moreover, exploration of enrichment analysis using www.MetaboAnalyst.ca provides information concerning similarities between metabolite disruptions in ME/CFS and those that occur in other diseases, while its biomarker analysis unit yielded prospective plasma biomarkers for ME/CFS. This work contributes key elements to the development of ME/CFS diagnostics, a crucial step required for discovering a therapy for any disease of unknown origin.