Cargando…
Co-differential Gene Selection and Clustering Based on Graph Regularized Multi-View NMF in Cancer Genomic Data
Cancer genomic data contain views from different sources that provide complementary information about genetic activity. This provides a new way for cancer research. Feature selection and multi-view clustering are hot topics in bioinformatics, and they can make full use of complementary information t...
Autores principales: | Yu, Na, Gao, Ying-Lian, Liu, Jin-Xing, Shang, Junliang, Zhu, Rong, Dai, Ling-Yun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6315625/ https://www.ncbi.nlm.nih.gov/pubmed/30487464 http://dx.doi.org/10.3390/genes9120586 |
Ejemplares similares
-
Robust hypergraph regularized non-negative matrix factorization for sample clustering and feature selection in multi-view gene expression data
por: Yu, Na, et al.
Publicado: (2019) -
Rank-Two NMF Clustering for Glioblastoma Characterization
por: Bougacha, Aymen, et al.
Publicado: (2018) -
Multi-cancer samples clustering via graph regularized low-rank representation method under sparse and symmetric constraints
por: Wang, Juan, et al.
Publicado: (2019) -
An NMF-L(2,1)-Norm Constraint Method for Characteristic Gene Selection
por: Wang, Dong, et al.
Publicado: (2016) -
Semi-Supervised Multi-View Clustering with Weighted Anchor Graph Embedding
por: Wang, Senhong, et al.
Publicado: (2021)