Cargando…

Iron Supplements Containing Lactobacillus plantarum 299v Increase Ferric Iron and Up-regulate the Ferric Reductase DCYTB in Human Caco-2/HT29 MTX Co-Cultures

Several human interventions have indicated that Lactobacillus plantarum 299v (L. plantarum 299v) increases intestinal iron absorption. The aim of the present study was to investigate possible effects of L. plantarum 299v on the mechanisms of iron absorption on the cellular level. We have previously...

Descripción completa

Detalles Bibliográficos
Autores principales: Sandberg, Ann-Sofie, Önning, Gunilla, Engström, Niklas, Scheers, Nathalie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6315724/
https://www.ncbi.nlm.nih.gov/pubmed/30544799
http://dx.doi.org/10.3390/nu10121949
_version_ 1783384362561044480
author Sandberg, Ann-Sofie
Önning, Gunilla
Engström, Niklas
Scheers, Nathalie
author_facet Sandberg, Ann-Sofie
Önning, Gunilla
Engström, Niklas
Scheers, Nathalie
author_sort Sandberg, Ann-Sofie
collection PubMed
description Several human interventions have indicated that Lactobacillus plantarum 299v (L. plantarum 299v) increases intestinal iron absorption. The aim of the present study was to investigate possible effects of L. plantarum 299v on the mechanisms of iron absorption on the cellular level. We have previously shown that lactic fermentation of vegetables increased iron absorption in humans. It was revealed that the level of ferric iron [Fe (H(2)O)(5)](2+) was increased after fermentation. Therefore, we used voltammetry to measure the oxidation state of iron in simulated gastrointestinal digested oat and mango drinks and capsule meals containing L. plantarum 299v. We also exposed human intestinal co-cultures of enterocytes and goblet cells (Caco-2/HT29 MTX) to the supplements in order to study the effect on proteins possibly involved (MUC5AC, DCYTB, DMT1, and ferritin). We detected an increase in ferric iron in the digested meals and drinks containing L. plantarum 299v. In the intestinal cell model, we observed that the ferric reductase DCYTB increased in the presence of L. plantarum 299v, while the production of mucin (MUC5AC) decreased independently of L. plantarum 299v. In conclusion, the data suggest that the effect of L. plantarum 299v on iron metabolism is mediated through driving the Fe(3+)/DCYTB axis.
format Online
Article
Text
id pubmed-6315724
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-63157242019-01-08 Iron Supplements Containing Lactobacillus plantarum 299v Increase Ferric Iron and Up-regulate the Ferric Reductase DCYTB in Human Caco-2/HT29 MTX Co-Cultures Sandberg, Ann-Sofie Önning, Gunilla Engström, Niklas Scheers, Nathalie Nutrients Article Several human interventions have indicated that Lactobacillus plantarum 299v (L. plantarum 299v) increases intestinal iron absorption. The aim of the present study was to investigate possible effects of L. plantarum 299v on the mechanisms of iron absorption on the cellular level. We have previously shown that lactic fermentation of vegetables increased iron absorption in humans. It was revealed that the level of ferric iron [Fe (H(2)O)(5)](2+) was increased after fermentation. Therefore, we used voltammetry to measure the oxidation state of iron in simulated gastrointestinal digested oat and mango drinks and capsule meals containing L. plantarum 299v. We also exposed human intestinal co-cultures of enterocytes and goblet cells (Caco-2/HT29 MTX) to the supplements in order to study the effect on proteins possibly involved (MUC5AC, DCYTB, DMT1, and ferritin). We detected an increase in ferric iron in the digested meals and drinks containing L. plantarum 299v. In the intestinal cell model, we observed that the ferric reductase DCYTB increased in the presence of L. plantarum 299v, while the production of mucin (MUC5AC) decreased independently of L. plantarum 299v. In conclusion, the data suggest that the effect of L. plantarum 299v on iron metabolism is mediated through driving the Fe(3+)/DCYTB axis. MDPI 2018-12-08 /pmc/articles/PMC6315724/ /pubmed/30544799 http://dx.doi.org/10.3390/nu10121949 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Sandberg, Ann-Sofie
Önning, Gunilla
Engström, Niklas
Scheers, Nathalie
Iron Supplements Containing Lactobacillus plantarum 299v Increase Ferric Iron and Up-regulate the Ferric Reductase DCYTB in Human Caco-2/HT29 MTX Co-Cultures
title Iron Supplements Containing Lactobacillus plantarum 299v Increase Ferric Iron and Up-regulate the Ferric Reductase DCYTB in Human Caco-2/HT29 MTX Co-Cultures
title_full Iron Supplements Containing Lactobacillus plantarum 299v Increase Ferric Iron and Up-regulate the Ferric Reductase DCYTB in Human Caco-2/HT29 MTX Co-Cultures
title_fullStr Iron Supplements Containing Lactobacillus plantarum 299v Increase Ferric Iron and Up-regulate the Ferric Reductase DCYTB in Human Caco-2/HT29 MTX Co-Cultures
title_full_unstemmed Iron Supplements Containing Lactobacillus plantarum 299v Increase Ferric Iron and Up-regulate the Ferric Reductase DCYTB in Human Caco-2/HT29 MTX Co-Cultures
title_short Iron Supplements Containing Lactobacillus plantarum 299v Increase Ferric Iron and Up-regulate the Ferric Reductase DCYTB in Human Caco-2/HT29 MTX Co-Cultures
title_sort iron supplements containing lactobacillus plantarum 299v increase ferric iron and up-regulate the ferric reductase dcytb in human caco-2/ht29 mtx co-cultures
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6315724/
https://www.ncbi.nlm.nih.gov/pubmed/30544799
http://dx.doi.org/10.3390/nu10121949
work_keys_str_mv AT sandbergannsofie ironsupplementscontaininglactobacillusplantarum299vincreaseferricironandupregulatetheferricreductasedcytbinhumancaco2ht29mtxcocultures
AT onninggunilla ironsupplementscontaininglactobacillusplantarum299vincreaseferricironandupregulatetheferricreductasedcytbinhumancaco2ht29mtxcocultures
AT engstromniklas ironsupplementscontaininglactobacillusplantarum299vincreaseferricironandupregulatetheferricreductasedcytbinhumancaco2ht29mtxcocultures
AT scheersnathalie ironsupplementscontaininglactobacillusplantarum299vincreaseferricironandupregulatetheferricreductasedcytbinhumancaco2ht29mtxcocultures