Cargando…

From Bernstein's rheotome to Neher‐Sakmann’s patch electrode. The action potential

The aim of this review was to provide an overview of the most important stages in the development of cellular electrophysiology. The period covered starts with Bernstein's formulation of the membrane hypothesis and the measurement of the nerve and muscle action potential. Technical innovations...

Descripción completa

Detalles Bibliográficos
Autor principal: Carmeliet, Edward
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6316177/
https://www.ncbi.nlm.nih.gov/pubmed/30604910
http://dx.doi.org/10.14814/phy2.13861
Descripción
Sumario:The aim of this review was to provide an overview of the most important stages in the development of cellular electrophysiology. The period covered starts with Bernstein's formulation of the membrane hypothesis and the measurement of the nerve and muscle action potential. Technical innovations make discoveries possible. This was the case with the use of the squid giant axon, allowing the insertion of “large” intracellular electrodes and derivation of transmembrane potentials. Application of the newly developed voltage clamp method for measuring ionic currents, resulted in the formulation of the ionic theory. At the same time transmembrane measurements were made possible in smaller cells by the introduction of the microelectrode. An improvement of this electrode was the next major (r)evolution. The patch electrode made it possible to descend to the molecular level and record single ionic channel activity. The patch technique has been proven to be exceptionally versatile. In its whole‐cell configuration it was the solution to measure voltage clamp currents in small cells. See also: https://doi.org/10.14814/phy2.13860 & https://doi.org/10.14814/phy2.13862