Cargando…
Preparation of Polymer Electrolyte Membranes via Radiation-Induced Graft Copolymerization on Poly(ethylene-alt-tetrafluoroethylene) (ETFE) Using the Crosslinker N,N′-Methylenebis(acrylamide)
Polymer electrolyte membranes (PEM) prepared by radiation-induced graft copolymerization are investigated. For this purpose, commercial poly(ethylene-alt-tetrafluoroethylene) (ETFE) films were activated by electron beam treatment and subsequently grafted with the monomers glycidyl methacrylate (GMA)...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6316420/ https://www.ncbi.nlm.nih.gov/pubmed/30404203 http://dx.doi.org/10.3390/membranes8040102 |
Sumario: | Polymer electrolyte membranes (PEM) prepared by radiation-induced graft copolymerization are investigated. For this purpose, commercial poly(ethylene-alt-tetrafluoroethylene) (ETFE) films were activated by electron beam treatment and subsequently grafted with the monomers glycidyl methacrylate (GMA), hydroxyethyl methacrylate (HEMA) and N,N′-methylenebis(acrylamide) (MBAA) as crosslinker. The target is to achieve a high degree of grafting (DG) and high proton conductivity. To evaluate the electrochemical performance, the PEMs were tested in a fuel cell and in a vanadium redox-flow battery (VRFB). High power densities of 134 mW∙cm(−2) and 474 mW∙cm(−2) were observed, respectively. |
---|