Cargando…

The Effect of a High-Dose Vitamin B Multivitamin Supplement on the Relationship between Brain Metabolism and Blood Biomarkers of Oxidative Stress: A Randomized Control Trial

A diet rich in B-group vitamins is essential for optimal body and brain function, and insufficient amounts of such vitamins have been associated with higher levels of neural inflammation and oxidative stress, as marked by increased blood plasma homocysteine. Neural biomarkers of oxidative stress qua...

Descripción completa

Detalles Bibliográficos
Autores principales: Ford, Talitha C., Downey, Luke A., Simpson, Tamara, McPhee, Grace, Oliver, Chris, Stough, Con
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6316433/
https://www.ncbi.nlm.nih.gov/pubmed/30513795
http://dx.doi.org/10.3390/nu10121860
Descripción
Sumario:A diet rich in B-group vitamins is essential for optimal body and brain function, and insufficient amounts of such vitamins have been associated with higher levels of neural inflammation and oxidative stress, as marked by increased blood plasma homocysteine. Neural biomarkers of oxidative stress quantified through proton magnetic spectroscopy (1H-MRS) are not well understood, and the relationship between such neural and blood biomarkers is seldom studied. The current study addresses this gap by investigating the direct effect of 6-month high-dose B-group vitamin supplementation on neural and blood biomarkers of metabolism. Using a randomized, double-blind, placebo-controlled design, 32 healthy adults (20 female, 12 male) aged 30–65 years underwent blood tests (vitamin B6, vitamin B12, folate, and homocysteine levels) and 1H-MRS of the posterior cingulate cortex (PCC) and dorsolateral prefrontal cortex (DLPFC) before and after supplementation. Results confirmed the supplement was effective in increasing vitamin B6 and vitamin B12 levels and reducing homocysteine, whereas there was no change in folate levels. There were significant relationships between vitamin B6 and N-acetylaspartate (NAA), choline, and creatine, as well as between vitamin B12 and creatine (ps < 0.05), whereas NAA in the PCC increased, albeit not significantly (p > 0.05). Together these data provide preliminary evidence for the efficacy of high-dose B-group supplementation in reducing oxidative stress and inflammation through increasing oxidative metabolism. It may also promote myelination, cellular metabolism, and energy storage.