Cargando…

Calorie Restriction Mimetics: Upstream-Type Compounds for Modulating Glucose Metabolism

Calorie restriction (CR) can prolong the human lifespan, but enforcing long-term CR is difficult. Therefore, a compound that reproduces the effect of CR without CR is needed. In this review, we summarize the current knowledge on compounds with CR mimetic (CRM) effects. More than 10 compounds have be...

Descripción completa

Detalles Bibliográficos
Autores principales: Shintani, Hideya, Shintani, Tomoya, Ashida, Hisashi, Sato, Masashi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6316630/
https://www.ncbi.nlm.nih.gov/pubmed/30469486
http://dx.doi.org/10.3390/nu10121821
Descripción
Sumario:Calorie restriction (CR) can prolong the human lifespan, but enforcing long-term CR is difficult. Therefore, a compound that reproduces the effect of CR without CR is needed. In this review, we summarize the current knowledge on compounds with CR mimetic (CRM) effects. More than 10 compounds have been listed as CRMs, some of which are conventionally categorized as upstream-type CRMs showing glycolytic inhibition, while the others are categorized as downstream-type CRMs that regulate or genetically modulate intracellular signaling proteins. Among these, we focus on upstream-type CRMs and propose their classification as compounds with energy metabolism inhibition effects, particularly glucose metabolism modulation effects. The upstream-type CRMs reviewed include chitosan, acarbose, sodium-glucose cotransporter 2 inhibitors, and hexose analogs such as 2-deoxy-d-glucose, d-glucosamine, and d-allulose, which show antiaging and longevity effects. Finally, we discuss the molecular definition of upstream-type CRMs.