Cargando…
Improving Chemical Autoencoder Latent Space and Molecular De Novo Generation Diversity with Heteroencoders
Chemical autoencoders are attractive models as they combine chemical space navigation with possibilities for de novo molecule generation in areas of interest. This enables them to produce focused chemical libraries around a single lead compound for employment early in a drug discovery project. Here,...
Autores principales: | Bjerrum, Esben Jannik, Sattarov, Boris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6316879/ https://www.ncbi.nlm.nih.gov/pubmed/30380783 http://dx.doi.org/10.3390/biom8040131 |
Ejemplares similares
-
A de novo molecular generation method using latent vector based generative adversarial network
por: Prykhodko, Oleksii, et al.
Publicado: (2019) -
Variational autoencoder-based chemical latent space for large molecular structures with 3D complexity
por: Ochiai, Toshiki, et al.
Publicado: (2023) -
Application of Generative Autoencoder in De Novo Molecular Design
por: Blaschke, Thomas, et al.
Publicado: (2017) -
Optimization of physical quantities in the autoencoder latent space
por: Park, S. M., et al.
Publicado: (2022) -
Molecular generative model based on conditional variational autoencoder for de novo molecular design
por: Lim, Jaechang, et al.
Publicado: (2018)