Cargando…

Mechanical Performance of Glass-Based Geopolymer Matrix Composites Reinforced with Cellulose Fibers

Glass-based geopolymers, incorporating fly ash and borosilicate glass, were processed in conditions of high alkalinity (NaOH 10–13 M). Different formulations (fly ash and borosilicate in mixtures of 70–30 wt% and 30–70 wt%, respectively) and physical conditions (soaking time and relative humidity) w...

Descripción completa

Detalles Bibliográficos
Autores principales: Taveri, Gianmarco, Bernardo, Enrico, Dlouhy, Ivo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6316911/
https://www.ncbi.nlm.nih.gov/pubmed/30486516
http://dx.doi.org/10.3390/ma11122395
Descripción
Sumario:Glass-based geopolymers, incorporating fly ash and borosilicate glass, were processed in conditions of high alkalinity (NaOH 10–13 M). Different formulations (fly ash and borosilicate in mixtures of 70–30 wt% and 30–70 wt%, respectively) and physical conditions (soaking time and relative humidity) were adopted. Flexural strength and fracture toughness were assessed for samples processed in optimized conditions by three-point bending and chevron notch testing, respectively. SEM was used to evaluate the fracture micromechanisms. Results showed that the geopolymerization efficiency is strongly influenced by the SiO(2)/Al(2)O(3) ratio and the curing conditions, especially the air humidity. The mechanical performances of the geopolymer samples were compared with those of cellulose fiber–geopolymer matrix composites with different fiber contents (1 wt%, 2 wt%, and 3 wt%). The composites exhibited higher strength and fracture resilience, with the maximum effect observed for the fiber content of 2 wt%. A chemical modification of the cellulose fiber surface was also observed.