Cargando…
Freeform Perfusable Microfluidics Embedded in Hydrogel Matrices
We report a modification of the freeform reversible embedding of suspended hydrogels (FRESH) 3D printing method for the fabrication of freeform perfusable microfluidics inside a hydrogel matrix. Xanthan gum is deposited into a CaCl(2) infused gelatine slurry to form filaments, which are consequently...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6316925/ https://www.ncbi.nlm.nih.gov/pubmed/30545119 http://dx.doi.org/10.3390/ma11122529 |
_version_ | 1783384644646862848 |
---|---|
author | Štumberger, Gabriela Vihar, Boštjan |
author_facet | Štumberger, Gabriela Vihar, Boštjan |
author_sort | Štumberger, Gabriela |
collection | PubMed |
description | We report a modification of the freeform reversible embedding of suspended hydrogels (FRESH) 3D printing method for the fabrication of freeform perfusable microfluidics inside a hydrogel matrix. Xanthan gum is deposited into a CaCl(2) infused gelatine slurry to form filaments, which are consequently rinsed to produce hollow channels. This provides a simple method for rapid prototyping of microfluidic devices based on biopolymers and potentially a new approach to the construction of vascular grafts for tissue engineering. |
format | Online Article Text |
id | pubmed-6316925 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-63169252019-01-08 Freeform Perfusable Microfluidics Embedded in Hydrogel Matrices Štumberger, Gabriela Vihar, Boštjan Materials (Basel) Communication We report a modification of the freeform reversible embedding of suspended hydrogels (FRESH) 3D printing method for the fabrication of freeform perfusable microfluidics inside a hydrogel matrix. Xanthan gum is deposited into a CaCl(2) infused gelatine slurry to form filaments, which are consequently rinsed to produce hollow channels. This provides a simple method for rapid prototyping of microfluidic devices based on biopolymers and potentially a new approach to the construction of vascular grafts for tissue engineering. MDPI 2018-12-12 /pmc/articles/PMC6316925/ /pubmed/30545119 http://dx.doi.org/10.3390/ma11122529 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Communication Štumberger, Gabriela Vihar, Boštjan Freeform Perfusable Microfluidics Embedded in Hydrogel Matrices |
title | Freeform Perfusable Microfluidics Embedded in Hydrogel Matrices |
title_full | Freeform Perfusable Microfluidics Embedded in Hydrogel Matrices |
title_fullStr | Freeform Perfusable Microfluidics Embedded in Hydrogel Matrices |
title_full_unstemmed | Freeform Perfusable Microfluidics Embedded in Hydrogel Matrices |
title_short | Freeform Perfusable Microfluidics Embedded in Hydrogel Matrices |
title_sort | freeform perfusable microfluidics embedded in hydrogel matrices |
topic | Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6316925/ https://www.ncbi.nlm.nih.gov/pubmed/30545119 http://dx.doi.org/10.3390/ma11122529 |
work_keys_str_mv | AT stumbergergabriela freeformperfusablemicrofluidicsembeddedinhydrogelmatrices AT viharbostjan freeformperfusablemicrofluidicsembeddedinhydrogelmatrices |