Cargando…

Freeform Perfusable Microfluidics Embedded in Hydrogel Matrices

We report a modification of the freeform reversible embedding of suspended hydrogels (FRESH) 3D printing method for the fabrication of freeform perfusable microfluidics inside a hydrogel matrix. Xanthan gum is deposited into a CaCl(2) infused gelatine slurry to form filaments, which are consequently...

Descripción completa

Detalles Bibliográficos
Autores principales: Štumberger, Gabriela, Vihar, Boštjan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6316925/
https://www.ncbi.nlm.nih.gov/pubmed/30545119
http://dx.doi.org/10.3390/ma11122529
_version_ 1783384644646862848
author Štumberger, Gabriela
Vihar, Boštjan
author_facet Štumberger, Gabriela
Vihar, Boštjan
author_sort Štumberger, Gabriela
collection PubMed
description We report a modification of the freeform reversible embedding of suspended hydrogels (FRESH) 3D printing method for the fabrication of freeform perfusable microfluidics inside a hydrogel matrix. Xanthan gum is deposited into a CaCl(2) infused gelatine slurry to form filaments, which are consequently rinsed to produce hollow channels. This provides a simple method for rapid prototyping of microfluidic devices based on biopolymers and potentially a new approach to the construction of vascular grafts for tissue engineering.
format Online
Article
Text
id pubmed-6316925
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-63169252019-01-08 Freeform Perfusable Microfluidics Embedded in Hydrogel Matrices Štumberger, Gabriela Vihar, Boštjan Materials (Basel) Communication We report a modification of the freeform reversible embedding of suspended hydrogels (FRESH) 3D printing method for the fabrication of freeform perfusable microfluidics inside a hydrogel matrix. Xanthan gum is deposited into a CaCl(2) infused gelatine slurry to form filaments, which are consequently rinsed to produce hollow channels. This provides a simple method for rapid prototyping of microfluidic devices based on biopolymers and potentially a new approach to the construction of vascular grafts for tissue engineering. MDPI 2018-12-12 /pmc/articles/PMC6316925/ /pubmed/30545119 http://dx.doi.org/10.3390/ma11122529 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Communication
Štumberger, Gabriela
Vihar, Boštjan
Freeform Perfusable Microfluidics Embedded in Hydrogel Matrices
title Freeform Perfusable Microfluidics Embedded in Hydrogel Matrices
title_full Freeform Perfusable Microfluidics Embedded in Hydrogel Matrices
title_fullStr Freeform Perfusable Microfluidics Embedded in Hydrogel Matrices
title_full_unstemmed Freeform Perfusable Microfluidics Embedded in Hydrogel Matrices
title_short Freeform Perfusable Microfluidics Embedded in Hydrogel Matrices
title_sort freeform perfusable microfluidics embedded in hydrogel matrices
topic Communication
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6316925/
https://www.ncbi.nlm.nih.gov/pubmed/30545119
http://dx.doi.org/10.3390/ma11122529
work_keys_str_mv AT stumbergergabriela freeformperfusablemicrofluidicsembeddedinhydrogelmatrices
AT viharbostjan freeformperfusablemicrofluidicsembeddedinhydrogelmatrices