Cargando…

Computation of Propagating and Non-Propagating Lamb-Like Wave in a Functionally Graded Piezoelectric Spherical Curved Plate by an Orthogonal Function Technique

Non-propagating waves have great potential for crack evaluation, but it is difficult to obtain the complex solutions of the transcendental dispersion equation corresponding to the non-propagating wave. This paper presents an analytical approach based on the orthogonal function technique to investiga...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xiaoming, Liang, Shunli, Han, Xiaoming, Li, Zhi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6317008/
https://www.ncbi.nlm.nih.gov/pubmed/30477178
http://dx.doi.org/10.3390/ma11122363
Descripción
Sumario:Non-propagating waves have great potential for crack evaluation, but it is difficult to obtain the complex solutions of the transcendental dispersion equation corresponding to the non-propagating wave. This paper presents an analytical approach based on the orthogonal function technique to investigate non-propagating Lamb-like waves in a functionally graded piezoelectric spherical curved plate. The presented approach can transform the set of partial differential equations for the acoustic waves into an eigenvalue problem that can give the generally complex wave numbers and the field profiles. A comparison of the obtained results with the well-known ones in plates is provided. The obtained solutions of the dispersion equation are shown graphically in three dimensional frequency-complex wave number space, which aids in understanding the properties of non-propagating waves better. The properties of the guided wave, including real, purely imaginary, and complex branches in various functionally graded piezoelectric spherical curved plates, are studied. The effects of material piezoelectricity, graded fields, and mechanical and electrical boundary conditions on the dispersion characteristics, are illustrated. The amplitude distributions of displacement and electric potential are also discussed, to analyze the specificities of non-propagating waves.