Cargando…
Nanostructure Design and Catalytic Performance of Mo/ZnAl-LDH in Cationic Orchid X-BL Removal
The nanostructure of ZnAl-layered double hydroxide (ZnAl-LDH) was designed to promote the catalytic performance of Mo-based ZnAl-LDH (Mo/ZnAl-LDH) catalysts, in a catalytic wet air oxidation (CWAO) process, under room temperature and pressure, in degradation of dye wastewater. Four most commonly use...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6317024/ https://www.ncbi.nlm.nih.gov/pubmed/30486456 http://dx.doi.org/10.3390/ma11122390 |
_version_ | 1783384667483799552 |
---|---|
author | Xu, Yin Liu, Tingjiao Li, Yang Liu, Yun Ge, Fei |
author_facet | Xu, Yin Liu, Tingjiao Li, Yang Liu, Yun Ge, Fei |
author_sort | Xu, Yin |
collection | PubMed |
description | The nanostructure of ZnAl-layered double hydroxide (ZnAl-LDH) was designed to promote the catalytic performance of Mo-based ZnAl-LDH (Mo/ZnAl-LDH) catalysts, in a catalytic wet air oxidation (CWAO) process, under room temperature and pressure, in degradation of dye wastewater. Four most commonly used preparation methods, traditional precipitation (TP), hydrothermal synthesis (HS), sol-gel (SG), and urea co-precipitation (UC) were employed to prepare the ZnAl-LDH. The resulting Mo/ZnAl-LDH samples were contrasted through surface area, crystal structure, chemical state, and morphology. The degradation of cationic orchid X-BL, under room temperature and pressure, was developed to determine the catalytic activity of these Mo/ZnAl-LDH samples. The results showed that the nanostructure of ZnAl-LDH, prepared by HS, enhanced the adhesion of the catalytic active component, thus Mo/ZnAl-LDH had the highest catalytic activity of 84.2% color removal efficiency and 73.9% total organic carbon removal efficiency. Specific Mo species, such as Na(2)Mo(2)O(7), Mo dispersion, and O(2−) ions were proved to be related with catalytic performance. These findings preliminarily clarified that LDHs preparation methods make a difference in the performance of Mo/LDHs. |
format | Online Article Text |
id | pubmed-6317024 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-63170242019-01-08 Nanostructure Design and Catalytic Performance of Mo/ZnAl-LDH in Cationic Orchid X-BL Removal Xu, Yin Liu, Tingjiao Li, Yang Liu, Yun Ge, Fei Materials (Basel) Article The nanostructure of ZnAl-layered double hydroxide (ZnAl-LDH) was designed to promote the catalytic performance of Mo-based ZnAl-LDH (Mo/ZnAl-LDH) catalysts, in a catalytic wet air oxidation (CWAO) process, under room temperature and pressure, in degradation of dye wastewater. Four most commonly used preparation methods, traditional precipitation (TP), hydrothermal synthesis (HS), sol-gel (SG), and urea co-precipitation (UC) were employed to prepare the ZnAl-LDH. The resulting Mo/ZnAl-LDH samples were contrasted through surface area, crystal structure, chemical state, and morphology. The degradation of cationic orchid X-BL, under room temperature and pressure, was developed to determine the catalytic activity of these Mo/ZnAl-LDH samples. The results showed that the nanostructure of ZnAl-LDH, prepared by HS, enhanced the adhesion of the catalytic active component, thus Mo/ZnAl-LDH had the highest catalytic activity of 84.2% color removal efficiency and 73.9% total organic carbon removal efficiency. Specific Mo species, such as Na(2)Mo(2)O(7), Mo dispersion, and O(2−) ions were proved to be related with catalytic performance. These findings preliminarily clarified that LDHs preparation methods make a difference in the performance of Mo/LDHs. MDPI 2018-11-27 /pmc/articles/PMC6317024/ /pubmed/30486456 http://dx.doi.org/10.3390/ma11122390 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Xu, Yin Liu, Tingjiao Li, Yang Liu, Yun Ge, Fei Nanostructure Design and Catalytic Performance of Mo/ZnAl-LDH in Cationic Orchid X-BL Removal |
title | Nanostructure Design and Catalytic Performance of Mo/ZnAl-LDH in Cationic Orchid X-BL Removal |
title_full | Nanostructure Design and Catalytic Performance of Mo/ZnAl-LDH in Cationic Orchid X-BL Removal |
title_fullStr | Nanostructure Design and Catalytic Performance of Mo/ZnAl-LDH in Cationic Orchid X-BL Removal |
title_full_unstemmed | Nanostructure Design and Catalytic Performance of Mo/ZnAl-LDH in Cationic Orchid X-BL Removal |
title_short | Nanostructure Design and Catalytic Performance of Mo/ZnAl-LDH in Cationic Orchid X-BL Removal |
title_sort | nanostructure design and catalytic performance of mo/znal-ldh in cationic orchid x-bl removal |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6317024/ https://www.ncbi.nlm.nih.gov/pubmed/30486456 http://dx.doi.org/10.3390/ma11122390 |
work_keys_str_mv | AT xuyin nanostructuredesignandcatalyticperformanceofmoznalldhincationicorchidxblremoval AT liutingjiao nanostructuredesignandcatalyticperformanceofmoznalldhincationicorchidxblremoval AT liyang nanostructuredesignandcatalyticperformanceofmoznalldhincationicorchidxblremoval AT liuyun nanostructuredesignandcatalyticperformanceofmoznalldhincationicorchidxblremoval AT gefei nanostructuredesignandcatalyticperformanceofmoznalldhincationicorchidxblremoval |