Cargando…
Damage of Hygrothermally Conditioned Carbon Epoxy Composites under High-Velocity Impact
The influence of hygrothermal aging on high-velocity impact damage of carbon fiber-reinforced polymer (CFRP) laminates is investigated. Composite laminate specimens were preconditioned in water at 70 °C. The laminates were subsequently impacted by flat-, sphere-, and cone- ended projectiles with vel...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6317049/ https://www.ncbi.nlm.nih.gov/pubmed/30545087 http://dx.doi.org/10.3390/ma11122525 |
Sumario: | The influence of hygrothermal aging on high-velocity impact damage of carbon fiber-reinforced polymer (CFRP) laminates is investigated. Composite laminate specimens were preconditioned in water at 70 °C. The laminates were subsequently impacted by flat-, sphere-, and cone- ended projectiles with velocities of 45, 68, and 86 m/s. The incident and residual velocities were collected during the impact test. The impact-induced damages were measured by ultrasonic C-scan, a digital microscope system, and a scanning electron microscope. The results show that the hygrothermally conditioned laminates offer a higher energy absorption during high-velocity impact. Due to the weakening of the interlaminar properties, the hygrothermally conditioned laminates are more susceptible to delamination failure, and shear-induced debonding dominates. The projected delamination area increases with the increment of impact velocity. The damaged region becomes close to a circular shape after hydrothermal conditioning, and close to a rhomboidal shape for the dry specimens. |
---|