Cargando…
Synthesis and Characterization of Novel Fe-Mn-Ce Ternary Oxide–Biochar Composites as Highly Efficient Adsorbents for As(III) Removal from Aqueous Solutions
The widespread pollution of water bodies with arsenic (As) necessitates the development of efficient decontamination techniques. To address this issue, we herein prepare Fe-Mn-Ce ternary oxide-biochar composites (FMCBCs) using impregnation/sintering methods and examined their physicochemical propert...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6317176/ https://www.ncbi.nlm.nih.gov/pubmed/30513910 http://dx.doi.org/10.3390/ma11122445 |
_version_ | 1783384699387772928 |
---|---|
author | Liu, Xuewei Zhang, Guogang Lin, Lina Khan, Zulqarnain Haider Qiu, Weiwen Song, Zhengguo |
author_facet | Liu, Xuewei Zhang, Guogang Lin, Lina Khan, Zulqarnain Haider Qiu, Weiwen Song, Zhengguo |
author_sort | Liu, Xuewei |
collection | PubMed |
description | The widespread pollution of water bodies with arsenic (As) necessitates the development of efficient decontamination techniques. To address this issue, we herein prepare Fe-Mn-Ce ternary oxide-biochar composites (FMCBCs) using impregnation/sintering methods and examined their physicochemical properties, morphologies, and As(III) removal performances. The specific surface area of FMCBCs increased with increasing Ce content and enhanced the quantity of surface functional groups (–OH, –COOH). The adsorption of As(III) on FMCBCs was well represented by pseudo-second-order kinetics, and the As(III) adsorption capacity of the best-performing FMCBCs (8.47 mg g(−1) for FMCBC(3)) exceeded that of BC by a factor of 2.9. At pH = 3, the amount of adsorption of As(III) by FMCBCs reached a maximum, and the increased ionic strength could enhance adsorption capacity of FMCBCs. Moreover, an As(III) removal efficiency of ~99% was observed for FMCBC(3) at a dosage of 8 g L(−1), which highlighted its great potential as an absorbent for As(III) removal from contaminated water. |
format | Online Article Text |
id | pubmed-6317176 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-63171762019-01-08 Synthesis and Characterization of Novel Fe-Mn-Ce Ternary Oxide–Biochar Composites as Highly Efficient Adsorbents for As(III) Removal from Aqueous Solutions Liu, Xuewei Zhang, Guogang Lin, Lina Khan, Zulqarnain Haider Qiu, Weiwen Song, Zhengguo Materials (Basel) Article The widespread pollution of water bodies with arsenic (As) necessitates the development of efficient decontamination techniques. To address this issue, we herein prepare Fe-Mn-Ce ternary oxide-biochar composites (FMCBCs) using impregnation/sintering methods and examined their physicochemical properties, morphologies, and As(III) removal performances. The specific surface area of FMCBCs increased with increasing Ce content and enhanced the quantity of surface functional groups (–OH, –COOH). The adsorption of As(III) on FMCBCs was well represented by pseudo-second-order kinetics, and the As(III) adsorption capacity of the best-performing FMCBCs (8.47 mg g(−1) for FMCBC(3)) exceeded that of BC by a factor of 2.9. At pH = 3, the amount of adsorption of As(III) by FMCBCs reached a maximum, and the increased ionic strength could enhance adsorption capacity of FMCBCs. Moreover, an As(III) removal efficiency of ~99% was observed for FMCBC(3) at a dosage of 8 g L(−1), which highlighted its great potential as an absorbent for As(III) removal from contaminated water. MDPI 2018-12-03 /pmc/articles/PMC6317176/ /pubmed/30513910 http://dx.doi.org/10.3390/ma11122445 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Liu, Xuewei Zhang, Guogang Lin, Lina Khan, Zulqarnain Haider Qiu, Weiwen Song, Zhengguo Synthesis and Characterization of Novel Fe-Mn-Ce Ternary Oxide–Biochar Composites as Highly Efficient Adsorbents for As(III) Removal from Aqueous Solutions |
title | Synthesis and Characterization of Novel Fe-Mn-Ce Ternary Oxide–Biochar Composites as Highly Efficient Adsorbents for As(III) Removal from Aqueous Solutions |
title_full | Synthesis and Characterization of Novel Fe-Mn-Ce Ternary Oxide–Biochar Composites as Highly Efficient Adsorbents for As(III) Removal from Aqueous Solutions |
title_fullStr | Synthesis and Characterization of Novel Fe-Mn-Ce Ternary Oxide–Biochar Composites as Highly Efficient Adsorbents for As(III) Removal from Aqueous Solutions |
title_full_unstemmed | Synthesis and Characterization of Novel Fe-Mn-Ce Ternary Oxide–Biochar Composites as Highly Efficient Adsorbents for As(III) Removal from Aqueous Solutions |
title_short | Synthesis and Characterization of Novel Fe-Mn-Ce Ternary Oxide–Biochar Composites as Highly Efficient Adsorbents for As(III) Removal from Aqueous Solutions |
title_sort | synthesis and characterization of novel fe-mn-ce ternary oxide–biochar composites as highly efficient adsorbents for as(iii) removal from aqueous solutions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6317176/ https://www.ncbi.nlm.nih.gov/pubmed/30513910 http://dx.doi.org/10.3390/ma11122445 |
work_keys_str_mv | AT liuxuewei synthesisandcharacterizationofnovelfemnceternaryoxidebiocharcompositesashighlyefficientadsorbentsforasiiiremovalfromaqueoussolutions AT zhangguogang synthesisandcharacterizationofnovelfemnceternaryoxidebiocharcompositesashighlyefficientadsorbentsforasiiiremovalfromaqueoussolutions AT linlina synthesisandcharacterizationofnovelfemnceternaryoxidebiocharcompositesashighlyefficientadsorbentsforasiiiremovalfromaqueoussolutions AT khanzulqarnainhaider synthesisandcharacterizationofnovelfemnceternaryoxidebiocharcompositesashighlyefficientadsorbentsforasiiiremovalfromaqueoussolutions AT qiuweiwen synthesisandcharacterizationofnovelfemnceternaryoxidebiocharcompositesashighlyefficientadsorbentsforasiiiremovalfromaqueoussolutions AT songzhengguo synthesisandcharacterizationofnovelfemnceternaryoxidebiocharcompositesashighlyefficientadsorbentsforasiiiremovalfromaqueoussolutions |