Cargando…
Determination of the Elasticity Modulus of 3D-Printed Octet-Truss Structures for Use in Porous Prosthesis Implants
In tissue engineering, scaffolds can be obtained by means of 3D printing. Different structures are used in order to reduce the stiffness of the solid material. The present article analyzes the mechanical behavior of octet-truss microstructures. Three different octet structures with strut radii of 0....
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6317202/ https://www.ncbi.nlm.nih.gov/pubmed/30501122 http://dx.doi.org/10.3390/ma11122420 |
Sumario: | In tissue engineering, scaffolds can be obtained by means of 3D printing. Different structures are used in order to reduce the stiffness of the solid material. The present article analyzes the mechanical behavior of octet-truss microstructures. Three different octet structures with strut radii of 0.4, 0.5, and 0.6 mm were studied. The theoretical relative densities corresponding to these structures were 34.7%, 48.3%, and 61.8%, respectively. Two different values for the ratio of height (H) to width (W) were considered, H/W = 2 and H/W = 4. Several specimens of each structure were printed, which had the shape of a square base prism. Compression tests were performed and the elasticity modulus (E) of the octet-truss lattice-structured material was determined, both, experimentally and by means of Finite Element Methods (FEM). The greater the strut radius, the higher the modulus of elasticity and the compressive strength. Better agreement was found between the experimental and the simulated modulus of elasticity results for H/W = 4 than for H/W = 2. The octet-truss lattice can be considered to be a promising structure for printing in the field of tissue engineering. |
---|