Cargando…
Segmentation of lung parenchyma in CT images using CNN trained with the clustering algorithm generated dataset
BACKGROUND: Lung segmentation constitutes a critical procedure for any clinical-decision supporting system aimed to improve the early diagnosis and treatment of lung diseases. Abnormal lungs mainly include lung parenchyma with commonalities on CT images across subjects, diseases and CT scanners, and...
Autores principales: | Xu, Mingjie, Qi, Shouliang, Yue, Yong, Teng, Yueyang, Xu, Lisheng, Yao, Yudong, Qian, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6317251/ https://www.ncbi.nlm.nih.gov/pubmed/30602393 http://dx.doi.org/10.1186/s12938-018-0619-9 |
Ejemplares similares
-
CNN models discriminating between pulmonary micro-nodules and non-nodules from CT images
por: Monkam, Patrice, et al.
Publicado: (2018) -
Automatic pulmonary fissure detection and lobe segmentation in CT chest images
por: Qi, Shouliang, et al.
Publicado: (2014) -
Deep CNN Model Using CT Radiomics Feature Mapping Recognizes EGFR Gene Mutation Status of Lung Adenocarcinoma
por: Zhang, Baihua, et al.
Publicado: (2021) -
Cycloidal CT with CNN-based sinogram completion and in-scan generation of training data
por: Pelt, Daniël M., et al.
Publicado: (2022) -
Segmentation of Microscope Erythrocyte Images by CNN-Enhanced Algorithms
por: Buczkowski, Mateusz, et al.
Publicado: (2021)