Cargando…
Performance comparison of neural network training algorithms in the modeling properties of steel fiber reinforced concrete
Our study is aimed at modeling the effect of three contributory factors, namely aspect ratio, water cement ratio and cement content on the water intake/absorption, compressive strength, flexural strength, split tensile strength and slump properties of steel fiber reinforced concrete. Artificial neur...
Autores principales: | Awolusi, T.F., Oke, O.L., Akinkurolere, O.O., Sojobi, A.O., Aluko, O.G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6317327/ https://www.ncbi.nlm.nih.gov/pubmed/30623130 http://dx.doi.org/10.1016/j.heliyon.2018.e01115 |
Ejemplares similares
-
Ternary and quaternary blends as partial replacement of cement to produce hollow sandcrete blocks
por: Sojobi, A.O., et al.
Publicado: (2021) -
Steel fiber reinforced concrete
Publicado: (1994) -
Database of Shear Experiments on Steel Fiber Reinforced Concrete Beams without Stirrups
por: Lantsoght, Eva O. L.
Publicado: (2019) -
Analysis of Residual Flexural Stiffness of Steel Fiber-Reinforced Concrete Beams with Steel Reinforcement
por: Kytinou, Violetta K., et al.
Publicado: (2020) -
Steel fiber reinforced concrete: behavior, modelling and design
por: Singh, Harvinder
Publicado: (2017)