Cargando…

Pathways regulating the expression of the immunomodulatory protein glycodelin in non-small cell lung cancer

Glycodelin [gene name, progesterone associated endometrial protein (PAEP)] was initially described as an immune system modulator in reproduction. Today, it is also known to be expressed in several types of cancer, including non-small cell lung cancer (NSCLC). In this cancer type, the feasibility of...

Descripción completa

Detalles Bibliográficos
Autores principales: Weber, Rebecca, Meister, Michael, Muley, Thomas, Thomas, Michael, Sültmann, Holger, Warth, Arne, Winter, Hauke, Herth, Felix J.F., Schneider, Marc A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6317686/
https://www.ncbi.nlm.nih.gov/pubmed/30535430
http://dx.doi.org/10.3892/ijo.2018.4654
Descripción
Sumario:Glycodelin [gene name, progesterone associated endometrial protein (PAEP)] was initially described as an immune system modulator in reproduction. Today, it is also known to be expressed in several types of cancer, including non-small cell lung cancer (NSCLC). In this cancer type, the feasibility of its usage as a follow-up biomarker and its potential role as an immune system modulator were described. It is assumed that NSCLC tumours secrete glycodelin to overcome immune surveillance. Therefore, targeting glycodelin might be a future approach with which to weaken the immune system defence of NSCLC tumours. In this context, it is important to understand the regulatory pathways of PAEP/glycodelin expression, as these are mostly unknown so far. In this study, we analysed the influence of several inducers and of their downstream pathways on PAEP/glycodelin expression in a human lung adenocarcinoma carcinoma (ADC; H1975) and a human lung squamous cell carcinoma (SQCC) cell line (2106T). PAEP/glycodelin expression was notably stimulated by the canonical transforming growth factor (TGF)-β pathway in SQCC cells and the PKC signalling cascade in both cell lines. The PI3K/AKT pathway inhibited PAEP/glycodelin expression in the ADC cells and an antagonizing role towards the other investigated signalling cascades is suggested herein. Furthermore, the mitogen-activated protein kinase kinase (MEK)/extracellular-signal regulated kinases (ERK) pathway was, to a lesser extent, found to be associated with increased PAEP/glycodelin amounts. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT), MEK/ERK pathway and TGF-β are targets of NSCLC drugs that are already approved or are currently under investigation. On the whole, the findings of this study provide evidence that inhibiting these targets affects the expression of glycodelin and its immunosuppressive effect in NSCLC tumours. Moreover, understanding the regulation of glycodelin expression may lead to the development of novel therapeutic approaches with which to weaken the immune system defence of NSCLC tumours in the future.