Cargando…
Robust estimation of hemo-dynamic parameters in traditional DCE-MRI models
PURPOSE: In dynamic contrast enhanced (DCE) MRI, separation of signal contributions from perfusion and leakage requires robust estimation of parameters in a pharmacokinetic model. We present and quantify the performance of a method to compute tissue hemodynamic parameters from DCE data using establi...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6317807/ https://www.ncbi.nlm.nih.gov/pubmed/30605459 http://dx.doi.org/10.1371/journal.pone.0209891 |
_version_ | 1783384785831329792 |
---|---|
author | Hansen, Mikkel B. Tietze, Anna Haack, Søren Kallehauge, Jesper Mikkelsen, Irene K. Østergaard, Leif Mouridsen, Kim |
author_facet | Hansen, Mikkel B. Tietze, Anna Haack, Søren Kallehauge, Jesper Mikkelsen, Irene K. Østergaard, Leif Mouridsen, Kim |
author_sort | Hansen, Mikkel B. |
collection | PubMed |
description | PURPOSE: In dynamic contrast enhanced (DCE) MRI, separation of signal contributions from perfusion and leakage requires robust estimation of parameters in a pharmacokinetic model. We present and quantify the performance of a method to compute tissue hemodynamic parameters from DCE data using established pharmacokinetic models. METHODS: We propose a Bayesian scheme to obtain perfusion metrics from DCE MRI data. Initial performance is assessed through digital phantoms of the extended Tofts model (ETM) and the two-compartment exchange model (2CXM), comparing the Bayesian scheme to the standard Levenberg-Marquardt (LM) algorithm. Digital phantoms are also invoked to identify limitations in the pharmacokinetic models related to measurement conditions. Using computed maps of the extra vascular volume (v(e)) from 19 glioma patients, we analyze differences in the number of un-physiological high-intensity v(e) values for both ETM and 2CXM, using a one-tailed paired t-test assuming un-equal variance. RESULTS: The Bayesian parameter estimation scheme demonstrated superior performance over the LM technique in the digital phantom simulations. In addition, we identified limitations in parameter reliability in relation to scan duration for the 2CXM. DCE data for glioma and cervical cancer patients was analyzed with both algorithms and demonstrated improvement in image readability for the Bayesian method. The Bayesian method demonstrated significantly fewer non-physiological high-intensity v(e) values for the ETM (p<0.0001) and the 2CXM (p<0.0001). CONCLUSION: We have demonstrated substantial improvement of the perceptive quality of pharmacokinetic parameters from advanced compartment models using the Bayesian parameter estimation scheme as compared to the LM technique. |
format | Online Article Text |
id | pubmed-6317807 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-63178072019-01-19 Robust estimation of hemo-dynamic parameters in traditional DCE-MRI models Hansen, Mikkel B. Tietze, Anna Haack, Søren Kallehauge, Jesper Mikkelsen, Irene K. Østergaard, Leif Mouridsen, Kim PLoS One Research Article PURPOSE: In dynamic contrast enhanced (DCE) MRI, separation of signal contributions from perfusion and leakage requires robust estimation of parameters in a pharmacokinetic model. We present and quantify the performance of a method to compute tissue hemodynamic parameters from DCE data using established pharmacokinetic models. METHODS: We propose a Bayesian scheme to obtain perfusion metrics from DCE MRI data. Initial performance is assessed through digital phantoms of the extended Tofts model (ETM) and the two-compartment exchange model (2CXM), comparing the Bayesian scheme to the standard Levenberg-Marquardt (LM) algorithm. Digital phantoms are also invoked to identify limitations in the pharmacokinetic models related to measurement conditions. Using computed maps of the extra vascular volume (v(e)) from 19 glioma patients, we analyze differences in the number of un-physiological high-intensity v(e) values for both ETM and 2CXM, using a one-tailed paired t-test assuming un-equal variance. RESULTS: The Bayesian parameter estimation scheme demonstrated superior performance over the LM technique in the digital phantom simulations. In addition, we identified limitations in parameter reliability in relation to scan duration for the 2CXM. DCE data for glioma and cervical cancer patients was analyzed with both algorithms and demonstrated improvement in image readability for the Bayesian method. The Bayesian method demonstrated significantly fewer non-physiological high-intensity v(e) values for the ETM (p<0.0001) and the 2CXM (p<0.0001). CONCLUSION: We have demonstrated substantial improvement of the perceptive quality of pharmacokinetic parameters from advanced compartment models using the Bayesian parameter estimation scheme as compared to the LM technique. Public Library of Science 2019-01-03 /pmc/articles/PMC6317807/ /pubmed/30605459 http://dx.doi.org/10.1371/journal.pone.0209891 Text en © 2019 Hansen et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Hansen, Mikkel B. Tietze, Anna Haack, Søren Kallehauge, Jesper Mikkelsen, Irene K. Østergaard, Leif Mouridsen, Kim Robust estimation of hemo-dynamic parameters in traditional DCE-MRI models |
title | Robust estimation of hemo-dynamic parameters in traditional DCE-MRI models |
title_full | Robust estimation of hemo-dynamic parameters in traditional DCE-MRI models |
title_fullStr | Robust estimation of hemo-dynamic parameters in traditional DCE-MRI models |
title_full_unstemmed | Robust estimation of hemo-dynamic parameters in traditional DCE-MRI models |
title_short | Robust estimation of hemo-dynamic parameters in traditional DCE-MRI models |
title_sort | robust estimation of hemo-dynamic parameters in traditional dce-mri models |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6317807/ https://www.ncbi.nlm.nih.gov/pubmed/30605459 http://dx.doi.org/10.1371/journal.pone.0209891 |
work_keys_str_mv | AT hansenmikkelb robustestimationofhemodynamicparametersintraditionaldcemrimodels AT tietzeanna robustestimationofhemodynamicparametersintraditionaldcemrimodels AT haacksøren robustestimationofhemodynamicparametersintraditionaldcemrimodels AT kallehaugejesper robustestimationofhemodynamicparametersintraditionaldcemrimodels AT mikkelsenirenek robustestimationofhemodynamicparametersintraditionaldcemrimodels AT østergaardleif robustestimationofhemodynamicparametersintraditionaldcemrimodels AT mouridsenkim robustestimationofhemodynamicparametersintraditionaldcemrimodels |