Cargando…

Robust estimation of hemo-dynamic parameters in traditional DCE-MRI models

PURPOSE: In dynamic contrast enhanced (DCE) MRI, separation of signal contributions from perfusion and leakage requires robust estimation of parameters in a pharmacokinetic model. We present and quantify the performance of a method to compute tissue hemodynamic parameters from DCE data using establi...

Descripción completa

Detalles Bibliográficos
Autores principales: Hansen, Mikkel B., Tietze, Anna, Haack, Søren, Kallehauge, Jesper, Mikkelsen, Irene K., Østergaard, Leif, Mouridsen, Kim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6317807/
https://www.ncbi.nlm.nih.gov/pubmed/30605459
http://dx.doi.org/10.1371/journal.pone.0209891
_version_ 1783384785831329792
author Hansen, Mikkel B.
Tietze, Anna
Haack, Søren
Kallehauge, Jesper
Mikkelsen, Irene K.
Østergaard, Leif
Mouridsen, Kim
author_facet Hansen, Mikkel B.
Tietze, Anna
Haack, Søren
Kallehauge, Jesper
Mikkelsen, Irene K.
Østergaard, Leif
Mouridsen, Kim
author_sort Hansen, Mikkel B.
collection PubMed
description PURPOSE: In dynamic contrast enhanced (DCE) MRI, separation of signal contributions from perfusion and leakage requires robust estimation of parameters in a pharmacokinetic model. We present and quantify the performance of a method to compute tissue hemodynamic parameters from DCE data using established pharmacokinetic models. METHODS: We propose a Bayesian scheme to obtain perfusion metrics from DCE MRI data. Initial performance is assessed through digital phantoms of the extended Tofts model (ETM) and the two-compartment exchange model (2CXM), comparing the Bayesian scheme to the standard Levenberg-Marquardt (LM) algorithm. Digital phantoms are also invoked to identify limitations in the pharmacokinetic models related to measurement conditions. Using computed maps of the extra vascular volume (v(e)) from 19 glioma patients, we analyze differences in the number of un-physiological high-intensity v(e) values for both ETM and 2CXM, using a one-tailed paired t-test assuming un-equal variance. RESULTS: The Bayesian parameter estimation scheme demonstrated superior performance over the LM technique in the digital phantom simulations. In addition, we identified limitations in parameter reliability in relation to scan duration for the 2CXM. DCE data for glioma and cervical cancer patients was analyzed with both algorithms and demonstrated improvement in image readability for the Bayesian method. The Bayesian method demonstrated significantly fewer non-physiological high-intensity v(e) values for the ETM (p<0.0001) and the 2CXM (p<0.0001). CONCLUSION: We have demonstrated substantial improvement of the perceptive quality of pharmacokinetic parameters from advanced compartment models using the Bayesian parameter estimation scheme as compared to the LM technique.
format Online
Article
Text
id pubmed-6317807
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-63178072019-01-19 Robust estimation of hemo-dynamic parameters in traditional DCE-MRI models Hansen, Mikkel B. Tietze, Anna Haack, Søren Kallehauge, Jesper Mikkelsen, Irene K. Østergaard, Leif Mouridsen, Kim PLoS One Research Article PURPOSE: In dynamic contrast enhanced (DCE) MRI, separation of signal contributions from perfusion and leakage requires robust estimation of parameters in a pharmacokinetic model. We present and quantify the performance of a method to compute tissue hemodynamic parameters from DCE data using established pharmacokinetic models. METHODS: We propose a Bayesian scheme to obtain perfusion metrics from DCE MRI data. Initial performance is assessed through digital phantoms of the extended Tofts model (ETM) and the two-compartment exchange model (2CXM), comparing the Bayesian scheme to the standard Levenberg-Marquardt (LM) algorithm. Digital phantoms are also invoked to identify limitations in the pharmacokinetic models related to measurement conditions. Using computed maps of the extra vascular volume (v(e)) from 19 glioma patients, we analyze differences in the number of un-physiological high-intensity v(e) values for both ETM and 2CXM, using a one-tailed paired t-test assuming un-equal variance. RESULTS: The Bayesian parameter estimation scheme demonstrated superior performance over the LM technique in the digital phantom simulations. In addition, we identified limitations in parameter reliability in relation to scan duration for the 2CXM. DCE data for glioma and cervical cancer patients was analyzed with both algorithms and demonstrated improvement in image readability for the Bayesian method. The Bayesian method demonstrated significantly fewer non-physiological high-intensity v(e) values for the ETM (p<0.0001) and the 2CXM (p<0.0001). CONCLUSION: We have demonstrated substantial improvement of the perceptive quality of pharmacokinetic parameters from advanced compartment models using the Bayesian parameter estimation scheme as compared to the LM technique. Public Library of Science 2019-01-03 /pmc/articles/PMC6317807/ /pubmed/30605459 http://dx.doi.org/10.1371/journal.pone.0209891 Text en © 2019 Hansen et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Hansen, Mikkel B.
Tietze, Anna
Haack, Søren
Kallehauge, Jesper
Mikkelsen, Irene K.
Østergaard, Leif
Mouridsen, Kim
Robust estimation of hemo-dynamic parameters in traditional DCE-MRI models
title Robust estimation of hemo-dynamic parameters in traditional DCE-MRI models
title_full Robust estimation of hemo-dynamic parameters in traditional DCE-MRI models
title_fullStr Robust estimation of hemo-dynamic parameters in traditional DCE-MRI models
title_full_unstemmed Robust estimation of hemo-dynamic parameters in traditional DCE-MRI models
title_short Robust estimation of hemo-dynamic parameters in traditional DCE-MRI models
title_sort robust estimation of hemo-dynamic parameters in traditional dce-mri models
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6317807/
https://www.ncbi.nlm.nih.gov/pubmed/30605459
http://dx.doi.org/10.1371/journal.pone.0209891
work_keys_str_mv AT hansenmikkelb robustestimationofhemodynamicparametersintraditionaldcemrimodels
AT tietzeanna robustestimationofhemodynamicparametersintraditionaldcemrimodels
AT haacksøren robustestimationofhemodynamicparametersintraditionaldcemrimodels
AT kallehaugejesper robustestimationofhemodynamicparametersintraditionaldcemrimodels
AT mikkelsenirenek robustestimationofhemodynamicparametersintraditionaldcemrimodels
AT østergaardleif robustestimationofhemodynamicparametersintraditionaldcemrimodels
AT mouridsenkim robustestimationofhemodynamicparametersintraditionaldcemrimodels