Cargando…

Tacticity-Dependent Interchain Interactions of Poly(N-Isopropylacrylamide) in Water: Toward the Molecular Dynamics Simulation of a Thermoresponsive Microgel

The discovery that the lower critical solution temperature (LCST) of poly(N-Isopropylacrylamide) (PNIPAM) in water is affected by the tacticity opens the perspective to tune the volume phase transition temperature of PNIPAM microgels by changing the content of meso dyads in the polymer network. The...

Descripción completa

Detalles Bibliográficos
Autores principales: Paradossi, Gaio, Chiessi, Ester
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6318596/
https://www.ncbi.nlm.nih.gov/pubmed/30920510
http://dx.doi.org/10.3390/gels3020013
_version_ 1783384912423813120
author Paradossi, Gaio
Chiessi, Ester
author_facet Paradossi, Gaio
Chiessi, Ester
author_sort Paradossi, Gaio
collection PubMed
description The discovery that the lower critical solution temperature (LCST) of poly(N-Isopropylacrylamide) (PNIPAM) in water is affected by the tacticity opens the perspective to tune the volume phase transition temperature of PNIPAM microgels by changing the content of meso dyads in the polymer network. The increased hydrophobicity of isotactic-rich PNIPAM originates from self-assembly processes in aqueous solutions also below the LCST. The present work aims to detect the characteristics of the pair interaction between polymer chains, occurring in a concentration regime close to the chain overlap concentration, by comparing atactic and isotactic-rich PNIPAM solutions. Using atomistic molecular dynamics simulations, we successfully modelled the increased association ability of the meso-dyad-rich polymer in water below the LCST, and gain information on the features of the interchain junctions as a function of tacticity. Simulations carried out above the LCST display the PNIPAM transition to the insoluble state and do not detect a relevant influence of stereochemistry on the structure of the polymer ensemble. The results obtained at 323 K provide an estimate of the swelling ratio of non-stereocontrolled PNIPAM microgels which is in agreement with experimental findings for microgels prepared with low cross-linker/monomer feed ratios. This study represents the first step toward the atomistic modelling of PNIPAM microgels with a controlled tacticity.
format Online
Article
Text
id pubmed-6318596
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-63185962019-01-17 Tacticity-Dependent Interchain Interactions of Poly(N-Isopropylacrylamide) in Water: Toward the Molecular Dynamics Simulation of a Thermoresponsive Microgel Paradossi, Gaio Chiessi, Ester Gels Article The discovery that the lower critical solution temperature (LCST) of poly(N-Isopropylacrylamide) (PNIPAM) in water is affected by the tacticity opens the perspective to tune the volume phase transition temperature of PNIPAM microgels by changing the content of meso dyads in the polymer network. The increased hydrophobicity of isotactic-rich PNIPAM originates from self-assembly processes in aqueous solutions also below the LCST. The present work aims to detect the characteristics of the pair interaction between polymer chains, occurring in a concentration regime close to the chain overlap concentration, by comparing atactic and isotactic-rich PNIPAM solutions. Using atomistic molecular dynamics simulations, we successfully modelled the increased association ability of the meso-dyad-rich polymer in water below the LCST, and gain information on the features of the interchain junctions as a function of tacticity. Simulations carried out above the LCST display the PNIPAM transition to the insoluble state and do not detect a relevant influence of stereochemistry on the structure of the polymer ensemble. The results obtained at 323 K provide an estimate of the swelling ratio of non-stereocontrolled PNIPAM microgels which is in agreement with experimental findings for microgels prepared with low cross-linker/monomer feed ratios. This study represents the first step toward the atomistic modelling of PNIPAM microgels with a controlled tacticity. MDPI 2017-04-19 /pmc/articles/PMC6318596/ /pubmed/30920510 http://dx.doi.org/10.3390/gels3020013 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Paradossi, Gaio
Chiessi, Ester
Tacticity-Dependent Interchain Interactions of Poly(N-Isopropylacrylamide) in Water: Toward the Molecular Dynamics Simulation of a Thermoresponsive Microgel
title Tacticity-Dependent Interchain Interactions of Poly(N-Isopropylacrylamide) in Water: Toward the Molecular Dynamics Simulation of a Thermoresponsive Microgel
title_full Tacticity-Dependent Interchain Interactions of Poly(N-Isopropylacrylamide) in Water: Toward the Molecular Dynamics Simulation of a Thermoresponsive Microgel
title_fullStr Tacticity-Dependent Interchain Interactions of Poly(N-Isopropylacrylamide) in Water: Toward the Molecular Dynamics Simulation of a Thermoresponsive Microgel
title_full_unstemmed Tacticity-Dependent Interchain Interactions of Poly(N-Isopropylacrylamide) in Water: Toward the Molecular Dynamics Simulation of a Thermoresponsive Microgel
title_short Tacticity-Dependent Interchain Interactions of Poly(N-Isopropylacrylamide) in Water: Toward the Molecular Dynamics Simulation of a Thermoresponsive Microgel
title_sort tacticity-dependent interchain interactions of poly(n-isopropylacrylamide) in water: toward the molecular dynamics simulation of a thermoresponsive microgel
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6318596/
https://www.ncbi.nlm.nih.gov/pubmed/30920510
http://dx.doi.org/10.3390/gels3020013
work_keys_str_mv AT paradossigaio tacticitydependentinterchaininteractionsofpolynisopropylacrylamideinwatertowardthemoleculardynamicssimulationofathermoresponsivemicrogel
AT chiessiester tacticitydependentinterchaininteractionsofpolynisopropylacrylamideinwatertowardthemoleculardynamicssimulationofathermoresponsivemicrogel