Cargando…
Improved Water Barrier Properties of Calcium Alginate Capsules Modified by Silicone Oil
Calcium alginate films generally offer poor diffusion resistance to water. In this study, we present a technique for encapsulating aqueous drops in a modified calcium alginate membrane made from an emulsion of silicone oil and aqueous alginate solution and explore its effect on the loss of water fro...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6318625/ https://www.ncbi.nlm.nih.gov/pubmed/30674146 http://dx.doi.org/10.3390/gels2020014 |
Sumario: | Calcium alginate films generally offer poor diffusion resistance to water. In this study, we present a technique for encapsulating aqueous drops in a modified calcium alginate membrane made from an emulsion of silicone oil and aqueous alginate solution and explore its effect on the loss of water from the capsule cores. The capsule membrane storage modulus increases as the initial concentration of oil in the emulsion is increased. The water barrier properties of the fabricated capsules were determined by observing the mass loss of capsules in a controlled environment. It was found that capsules made with emulsions containing 50 wt% silicone oil were robust while taking at least twice the time to dry completely as compared to capsules made from only an aqueous alginate solution. The size of the oil droplets in the emulsion also has an effect on the water barrier properties of the fabricated capsules. This study demonstrates a facile method of producing aqueous core alginate capsules with a modified membrane that improves the diffusion resistance to water and can have a wide range of applications. |
---|