Cargando…
Single-Handed Helical Polybissilsesquioxane Nanotubes and Mesoporous Nanofibers Prepared by an External Templating Approach Using Low-Molecular-Weight Gelators
Chiral low-molecular-weight gelators (LMWGs) derived from amino acids can self-assemble into helical fibers and twisted/coiled nanoribbons by H-bonding and π–π interaction. Silica nanotubes with single-handed helices have been prepared using chiral LMWGs through sol–gel transcription. Molecular-scal...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6318642/ https://www.ncbi.nlm.nih.gov/pubmed/30920499 http://dx.doi.org/10.3390/gels3010002 |
_version_ | 1783384922830929920 |
---|---|
author | Hu, Jing Yang, Yonggang |
author_facet | Hu, Jing Yang, Yonggang |
author_sort | Hu, Jing |
collection | PubMed |
description | Chiral low-molecular-weight gelators (LMWGs) derived from amino acids can self-assemble into helical fibers and twisted/coiled nanoribbons by H-bonding and π–π interaction. Silica nanotubes with single-handed helices have been prepared using chiral LMWGs through sol–gel transcription. Molecular-scale chirality exists at the inner surfaces. Here, we discuss single-handed helical aromatic ring-bridged polybissilsesquioxane nanotubes and mesoporous nanofibers prepared using chiral LMWGs. This review aims at describing the formation mechanisms of the helical nanostructures, the origination of optical activity, and the applications for other helical nanomaterial preparation, mainly based on our group’s results. The morphology and handedness can be controlled by changing the chirality and kinds of LMWGs and tuning the reaction conditions. The aromatic rings arrange in a partially crystalline structure. The optical activity of the polybissilsesquioxane nanotubes and mesoporous nanofibers originates from chiral defects, including stacking and twisting of aromatic groups, on the inner surfaces. They can be used as the starting materials for preparation of silica, silicon, carbonaceous, silica/carbon, and silicon carbide nanotubes. |
format | Online Article Text |
id | pubmed-6318642 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-63186422019-01-17 Single-Handed Helical Polybissilsesquioxane Nanotubes and Mesoporous Nanofibers Prepared by an External Templating Approach Using Low-Molecular-Weight Gelators Hu, Jing Yang, Yonggang Gels Review Chiral low-molecular-weight gelators (LMWGs) derived from amino acids can self-assemble into helical fibers and twisted/coiled nanoribbons by H-bonding and π–π interaction. Silica nanotubes with single-handed helices have been prepared using chiral LMWGs through sol–gel transcription. Molecular-scale chirality exists at the inner surfaces. Here, we discuss single-handed helical aromatic ring-bridged polybissilsesquioxane nanotubes and mesoporous nanofibers prepared using chiral LMWGs. This review aims at describing the formation mechanisms of the helical nanostructures, the origination of optical activity, and the applications for other helical nanomaterial preparation, mainly based on our group’s results. The morphology and handedness can be controlled by changing the chirality and kinds of LMWGs and tuning the reaction conditions. The aromatic rings arrange in a partially crystalline structure. The optical activity of the polybissilsesquioxane nanotubes and mesoporous nanofibers originates from chiral defects, including stacking and twisting of aromatic groups, on the inner surfaces. They can be used as the starting materials for preparation of silica, silicon, carbonaceous, silica/carbon, and silicon carbide nanotubes. MDPI 2017-01-01 /pmc/articles/PMC6318642/ /pubmed/30920499 http://dx.doi.org/10.3390/gels3010002 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Hu, Jing Yang, Yonggang Single-Handed Helical Polybissilsesquioxane Nanotubes and Mesoporous Nanofibers Prepared by an External Templating Approach Using Low-Molecular-Weight Gelators |
title | Single-Handed Helical Polybissilsesquioxane Nanotubes and Mesoporous Nanofibers Prepared by an External Templating Approach Using Low-Molecular-Weight Gelators |
title_full | Single-Handed Helical Polybissilsesquioxane Nanotubes and Mesoporous Nanofibers Prepared by an External Templating Approach Using Low-Molecular-Weight Gelators |
title_fullStr | Single-Handed Helical Polybissilsesquioxane Nanotubes and Mesoporous Nanofibers Prepared by an External Templating Approach Using Low-Molecular-Weight Gelators |
title_full_unstemmed | Single-Handed Helical Polybissilsesquioxane Nanotubes and Mesoporous Nanofibers Prepared by an External Templating Approach Using Low-Molecular-Weight Gelators |
title_short | Single-Handed Helical Polybissilsesquioxane Nanotubes and Mesoporous Nanofibers Prepared by an External Templating Approach Using Low-Molecular-Weight Gelators |
title_sort | single-handed helical polybissilsesquioxane nanotubes and mesoporous nanofibers prepared by an external templating approach using low-molecular-weight gelators |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6318642/ https://www.ncbi.nlm.nih.gov/pubmed/30920499 http://dx.doi.org/10.3390/gels3010002 |
work_keys_str_mv | AT hujing singlehandedhelicalpolybissilsesquioxanenanotubesandmesoporousnanofiberspreparedbyanexternaltemplatingapproachusinglowmolecularweightgelators AT yangyonggang singlehandedhelicalpolybissilsesquioxanenanotubesandmesoporousnanofiberspreparedbyanexternaltemplatingapproachusinglowmolecularweightgelators |