Cargando…
Effects of Hesperidin on H(2)O(2)-Treated Chondrocytes and Cartilage in a Rat Osteoarthritis Model
BACKGROUND: The purpose of this research was to investigate the effects of hesperidin on hydrogen peroxide (H(2)O(2))-induced chondrocytes injury and cartilage degeneration in a rat model of osteoarthritis (OA). MATERIAL/METHODS: Chondrocytes were isolated from rat knee joints and treated with hespe...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Scientific Literature, Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6319163/ https://www.ncbi.nlm.nih.gov/pubmed/30557884 http://dx.doi.org/10.12659/MSM.913726 |
Sumario: | BACKGROUND: The purpose of this research was to investigate the effects of hesperidin on hydrogen peroxide (H(2)O(2))-induced chondrocytes injury and cartilage degeneration in a rat model of osteoarthritis (OA). MATERIAL/METHODS: Chondrocytes were isolated from rat knee joints and treated with hesperidin alone or combined with H(2)O(2). Then, Cell Counting Kit-8 (CCK-8) assay was used to assess cell viability. Activity of reactive oxygen species (ROS) and levels of malondialdehyde (MDA) were estimated. Cell apoptosis was assessed by flow cytometry assay. In addition, gene expression levels were measured for caspase 3, tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), collagen type II (Col2a1), aggrecan, (sex-determining region Y)-box 9 (SOX9), matrix metalloproteinase (MMP)-13, and inducible nitric oxide synthase (iNOS) through quantitative real-time polymerase chain reaction (qPCR). To examine the effects on cartilage destruction in vivo, hesperidin or vehicle control were orally administrated in a surgically-induced osteoarthritis (OA) model. RESULTS: The results indicated that hesperidin pretreatment of chondrocytes reduce H(2)O(2)-induced cytotoxicity and apoptosis. Hesperidin pretreatment decreased the formation of MDA and intracellular ROS, including chondrocyte apoptosis. Hesperidin also reversed the activity of H(2)O(2) on inhibiting the Col2a1, aggrecan, and SOX9 gene expression and increasing the gene expression of caspase 3, IL-1β, TNFα, iNOS, and MMP13. In addition, hesperidin administration markedly attenuated cartilage destruction and reduced IL-1β and TNF-α levels in a surgically-induced OA model. CONCLUSIONS: Our study suggests that hesperidin can prevent H(2)O(2)-induced chondrocytes injury through its antioxidant effects in vitro and reduce cartilage damage in a rat model of OA. |
---|