Cargando…

FMRIPrep: a robust preprocessing pipeline for functional MRI

Preprocessing of functional MRI (fMRI) involves numerous steps to clean and standardize data before statistical analysis. Generally, researchers create ad-hoc preprocessing workflows for each new dataset, building upon a large inventory of tools available. The complexity of these workflows has snowb...

Descripción completa

Detalles Bibliográficos
Autores principales: Esteban, Oscar, Markiewicz, Christopher J., Blair, Ross W., Moodie, Craig A., Isik, A. Ilkay, Erramuzpe, Asier, Kent, James D., Goncalves, Mathias, DuPre, Elizabeth, Snyder, Madeleine, Oya, Hiroyuki, Ghosh, Satrajit S., Wright, Jessey, Durnez, Joke, Poldrack, Russell A., Gorgolewski, Krzysztof J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6319393/
https://www.ncbi.nlm.nih.gov/pubmed/30532080
http://dx.doi.org/10.1038/s41592-018-0235-4
Descripción
Sumario:Preprocessing of functional MRI (fMRI) involves numerous steps to clean and standardize data before statistical analysis. Generally, researchers create ad-hoc preprocessing workflows for each new dataset, building upon a large inventory of tools available. The complexity of these workflows has snowballed with rapid advances in acquisition and processing. We introduce fMRIPrep, an analysis-agnostic tool that addresses the challenge of robust and reproducible preprocessing for fMRI data. FMRIPrep automatically adapts a best-in-breed workflow to the idiosyncrasies of virtually any dataset, ensuring high-quality preprocessing with no manual intervention. By introducing visual assessment checkpoints into an iterative integration framework for software-testing, we show that fMRIPrep robustly produces high-quality results on a diverse fMRI data collection. Additionally, fMRIPrep introduces less uncontrolled spatial smoothness than commonly used preprocessing tools. FMRIPrep equips neuroscientists with a high-quality, robust, easy-to-use and transparent preprocessing workflow, which can help ensure the validity of inference and the interpretability of their results.