Cargando…
FMRIPrep: a robust preprocessing pipeline for functional MRI
Preprocessing of functional MRI (fMRI) involves numerous steps to clean and standardize data before statistical analysis. Generally, researchers create ad-hoc preprocessing workflows for each new dataset, building upon a large inventory of tools available. The complexity of these workflows has snowb...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6319393/ https://www.ncbi.nlm.nih.gov/pubmed/30532080 http://dx.doi.org/10.1038/s41592-018-0235-4 |
_version_ | 1783385058499887104 |
---|---|
author | Esteban, Oscar Markiewicz, Christopher J. Blair, Ross W. Moodie, Craig A. Isik, A. Ilkay Erramuzpe, Asier Kent, James D. Goncalves, Mathias DuPre, Elizabeth Snyder, Madeleine Oya, Hiroyuki Ghosh, Satrajit S. Wright, Jessey Durnez, Joke Poldrack, Russell A. Gorgolewski, Krzysztof J. |
author_facet | Esteban, Oscar Markiewicz, Christopher J. Blair, Ross W. Moodie, Craig A. Isik, A. Ilkay Erramuzpe, Asier Kent, James D. Goncalves, Mathias DuPre, Elizabeth Snyder, Madeleine Oya, Hiroyuki Ghosh, Satrajit S. Wright, Jessey Durnez, Joke Poldrack, Russell A. Gorgolewski, Krzysztof J. |
author_sort | Esteban, Oscar |
collection | PubMed |
description | Preprocessing of functional MRI (fMRI) involves numerous steps to clean and standardize data before statistical analysis. Generally, researchers create ad-hoc preprocessing workflows for each new dataset, building upon a large inventory of tools available. The complexity of these workflows has snowballed with rapid advances in acquisition and processing. We introduce fMRIPrep, an analysis-agnostic tool that addresses the challenge of robust and reproducible preprocessing for fMRI data. FMRIPrep automatically adapts a best-in-breed workflow to the idiosyncrasies of virtually any dataset, ensuring high-quality preprocessing with no manual intervention. By introducing visual assessment checkpoints into an iterative integration framework for software-testing, we show that fMRIPrep robustly produces high-quality results on a diverse fMRI data collection. Additionally, fMRIPrep introduces less uncontrolled spatial smoothness than commonly used preprocessing tools. FMRIPrep equips neuroscientists with a high-quality, robust, easy-to-use and transparent preprocessing workflow, which can help ensure the validity of inference and the interpretability of their results. |
format | Online Article Text |
id | pubmed-6319393 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
record_format | MEDLINE/PubMed |
spelling | pubmed-63193932019-06-10 FMRIPrep: a robust preprocessing pipeline for functional MRI Esteban, Oscar Markiewicz, Christopher J. Blair, Ross W. Moodie, Craig A. Isik, A. Ilkay Erramuzpe, Asier Kent, James D. Goncalves, Mathias DuPre, Elizabeth Snyder, Madeleine Oya, Hiroyuki Ghosh, Satrajit S. Wright, Jessey Durnez, Joke Poldrack, Russell A. Gorgolewski, Krzysztof J. Nat Methods Article Preprocessing of functional MRI (fMRI) involves numerous steps to clean and standardize data before statistical analysis. Generally, researchers create ad-hoc preprocessing workflows for each new dataset, building upon a large inventory of tools available. The complexity of these workflows has snowballed with rapid advances in acquisition and processing. We introduce fMRIPrep, an analysis-agnostic tool that addresses the challenge of robust and reproducible preprocessing for fMRI data. FMRIPrep automatically adapts a best-in-breed workflow to the idiosyncrasies of virtually any dataset, ensuring high-quality preprocessing with no manual intervention. By introducing visual assessment checkpoints into an iterative integration framework for software-testing, we show that fMRIPrep robustly produces high-quality results on a diverse fMRI data collection. Additionally, fMRIPrep introduces less uncontrolled spatial smoothness than commonly used preprocessing tools. FMRIPrep equips neuroscientists with a high-quality, robust, easy-to-use and transparent preprocessing workflow, which can help ensure the validity of inference and the interpretability of their results. 2018-12-10 2019-01 /pmc/articles/PMC6319393/ /pubmed/30532080 http://dx.doi.org/10.1038/s41592-018-0235-4 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Esteban, Oscar Markiewicz, Christopher J. Blair, Ross W. Moodie, Craig A. Isik, A. Ilkay Erramuzpe, Asier Kent, James D. Goncalves, Mathias DuPre, Elizabeth Snyder, Madeleine Oya, Hiroyuki Ghosh, Satrajit S. Wright, Jessey Durnez, Joke Poldrack, Russell A. Gorgolewski, Krzysztof J. FMRIPrep: a robust preprocessing pipeline for functional MRI |
title | FMRIPrep: a robust preprocessing pipeline for functional MRI |
title_full | FMRIPrep: a robust preprocessing pipeline for functional MRI |
title_fullStr | FMRIPrep: a robust preprocessing pipeline for functional MRI |
title_full_unstemmed | FMRIPrep: a robust preprocessing pipeline for functional MRI |
title_short | FMRIPrep: a robust preprocessing pipeline for functional MRI |
title_sort | fmriprep: a robust preprocessing pipeline for functional mri |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6319393/ https://www.ncbi.nlm.nih.gov/pubmed/30532080 http://dx.doi.org/10.1038/s41592-018-0235-4 |
work_keys_str_mv | AT estebanoscar fmripreparobustpreprocessingpipelineforfunctionalmri AT markiewiczchristopherj fmripreparobustpreprocessingpipelineforfunctionalmri AT blairrossw fmripreparobustpreprocessingpipelineforfunctionalmri AT moodiecraiga fmripreparobustpreprocessingpipelineforfunctionalmri AT isikailkay fmripreparobustpreprocessingpipelineforfunctionalmri AT erramuzpeasier fmripreparobustpreprocessingpipelineforfunctionalmri AT kentjamesd fmripreparobustpreprocessingpipelineforfunctionalmri AT goncalvesmathias fmripreparobustpreprocessingpipelineforfunctionalmri AT dupreelizabeth fmripreparobustpreprocessingpipelineforfunctionalmri AT snydermadeleine fmripreparobustpreprocessingpipelineforfunctionalmri AT oyahiroyuki fmripreparobustpreprocessingpipelineforfunctionalmri AT ghoshsatrajits fmripreparobustpreprocessingpipelineforfunctionalmri AT wrightjessey fmripreparobustpreprocessingpipelineforfunctionalmri AT durnezjoke fmripreparobustpreprocessingpipelineforfunctionalmri AT poldrackrussella fmripreparobustpreprocessingpipelineforfunctionalmri AT gorgolewskikrzysztofj fmripreparobustpreprocessingpipelineforfunctionalmri |