Cargando…
Perceptual Discrimination of Speaking Style Under Cochlear Implant Simulation
OBJECTIVES: Real-life, adverse listening conditions involve a great deal of speech variability, including variability in speaking style. Depending on the speaking context, talkers may use a more casual, reduced speaking style or a more formal, careful speaking style. Attending to fine-grained acoust...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Williams And Wilkins
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6319584/ https://www.ncbi.nlm.nih.gov/pubmed/29742545 http://dx.doi.org/10.1097/AUD.0000000000000591 |
Sumario: | OBJECTIVES: Real-life, adverse listening conditions involve a great deal of speech variability, including variability in speaking style. Depending on the speaking context, talkers may use a more casual, reduced speaking style or a more formal, careful speaking style. Attending to fine-grained acoustic-phonetic details characterizing different speaking styles facilitates the perception of the speaking style used by the talker. These acoustic-phonetic cues are poorly encoded in cochlear implants (CIs), potentially rendering the discrimination of speaking style difficult. As a first step to characterizing CI perception of real-life speech forms, the present study investigated the perception of different speaking styles in normal-hearing (NH) listeners with and without CI simulation. DESIGN: The discrimination of three speaking styles (conversational reduced speech, speech from retold stories, and carefully read speech) was assessed using a speaking style discrimination task in two experiments. NH listeners classified sentence-length utterances, produced in one of the three styles, as either formal (careful) or informal (conversational). Utterances were presented with unmodified speaking rates in experiment 1 (31 NH, young adult Dutch speakers) and with modified speaking rates set to the average rate across all utterances in experiment 2 (28 NH, young adult Dutch speakers). In both experiments, acoustic noise-vocoder simulations of CIs were used to produce 12-channel (CI-12) and 4-channel (CI-4) vocoder simulation conditions, in addition to a no-simulation condition without CI simulation. RESULTS: In both experiments 1 and 2, NH listeners were able to reliably discriminate the speaking styles without CI simulation. However, this ability was reduced under CI simulation. In experiment 1, participants showed poor discrimination of speaking styles under CI simulation. Listeners used speaking rate as a cue to make their judgements, even though it was not a reliable cue to speaking style in the study materials. In experiment 2, without differences in speaking rate among speaking styles, listeners showed better discrimination of speaking styles under CI simulation, using additional cues to complete the task. CONCLUSIONS: The findings from the present study demonstrate that perceiving differences in three speaking styles under CI simulation is a difficult task because some important cues to speaking style are not fully available in these conditions. While some cues like speaking rate are available, this information alone may not always be a reliable indicator of a particular speaking style. Some other reliable speaking styles cues, such as degraded acoustic-phonetic information and variability in speaking rate within an utterance, may be available but less salient. However, as in experiment 2, listeners’ perception of speaking styles may be modified if they are constrained or trained to use these additional cues, which were more reliable in the context of the present study. Taken together, these results suggest that dealing with speech variability in real-life listening conditions may be a challenge for CI users. |
---|