Cargando…

Changes in hepato-renal gene expression in microminipigs following a single exposure to a mixture of perfluoroalkyl acids

It is evident that some perfluoroalkyl acids (PFAAs), a group of globally dispersed pollutants, have long biological half-lives in humans and farm animals. However, the effects of PFAAs in domestic animals have not been fully elucidated. The present study investigated how exposure to a single dose o...

Descripción completa

Detalles Bibliográficos
Autores principales: Sakuma, Akiko, Wasada Ochi, Haruyo, Yoshioka, Miyako, Yamanaka, Noriko, Ikezawa, Mitsutaka, Guruge, Keerthi S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6319762/
https://www.ncbi.nlm.nih.gov/pubmed/30608957
http://dx.doi.org/10.1371/journal.pone.0210110
Descripción
Sumario:It is evident that some perfluoroalkyl acids (PFAAs), a group of globally dispersed pollutants, have long biological half-lives in humans and farm animals. However, the effects of PFAAs in domestic animals have not been fully elucidated. The present study investigated how exposure to a single dose of a mixture of 10 PFAAs influenced hepatic and renal gene expression and histopathology, as well as plasma clinical biochemistry, in microminipigs (MMPigs) over 21 days. In animals treated with PFAAs, the mRNA expression of twelve genes related to fatty acid metabolism was upregulated in the kidney, while only few of these genes were induced in the liver. The expression of several kidney injury-associated genes such as, IGFBP1, IGFBP6, GCLC X2, GCLC X3, MSGT1, OLR1 was upregulated in the kidney. Interestingly, the expression of IGFBP-genes was differentially altered in the liver and kidney. Our findings thus identified hepato-renal gene expression changes in MMPigs that were associated with various molecular pathways including peroxisome proliferation, lipid metabolism, kidney injury, and apoptosis. Furthermore, serum HDL levels were significantly decreased following exposure to PFAAs, whereas no significant histopathological changes were detected, as compared to the vehicle group. Taken together, the present study provided the first indication that a single exposure to a mixture of PFAAs can produce changes in MMPig renal gene expression that were observed three weeks post exposure, suggesting that more attention should be paid to the kidney as a primary target organ of PFAAs.