Cargando…
Shared and differential default-mode related patterns of activity in an autobiographical, a self-referential and an attentional task
The default-mode network (DMN) comprises a set of brain regions that show deactivations during performance of attentionally demanding tasks, but also activation during certain processes including recall of autobiographical memories and processing information about oneself, among others. However, the...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6319771/ https://www.ncbi.nlm.nih.gov/pubmed/30608970 http://dx.doi.org/10.1371/journal.pone.0209376 |
Sumario: | The default-mode network (DMN) comprises a set of brain regions that show deactivations during performance of attentionally demanding tasks, but also activation during certain processes including recall of autobiographical memories and processing information about oneself, among others. However, the DMN is not activated in a homogeneous manner during performance of such tasks, so it is not clear to what extent its activation patterns correspond to deactivation patterns seen during attention-demanding tasks. In this fMRI study we compared patterns of activation in response to an autobiographical memory task to those observed in a self/other-reflection task, and compared both to deactivations observed during the n-back working memory task. Autobiographical recall and self-reflection activated several common DMN areas, which were also deactivated below baseline levels by the n-back task. Activation in the medial temporal lobe was seen during autobiographical recall but not the self/other task, and right angular gyrus activity was specifically linked to other-reflection. ROI analysis showed that most, but not all DMN regions were activated above baseline levels during the autobiographical memory and self-reflection tasks. Our results provide evidence for the usefulness of the autobiographical memory task to study DMN activity and support the notion of interacting subsystems within this network. |
---|