Cargando…
Machine learning models to predict disease progression among veterans with hepatitis C virus
BACKGROUND: Machine learning (ML) algorithms provide effective ways to build prediction models using longitudinal information given their capacity to incorporate numerous predictor variables without compromising the accuracy of the risk prediction. Clinical risk prediction models in chronic hepatiti...
Autores principales: | Konerman, Monica A., Beste, Lauren A., Van, Tony, Liu, Boang, Zhang, Xuefei, Zhu, Ji, Saini, Sameer D., Su, Grace L., Nallamothu, Brahmajee K., Ioannou, George N., Waljee, Akbar K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6319806/ https://www.ncbi.nlm.nih.gov/pubmed/30608929 http://dx.doi.org/10.1371/journal.pone.0208141 |
Ejemplares similares
-
Eliciting patient views on the allocation of limited healthcare resources: a deliberation on hepatitis C treatment in the Veterans Health Administration
por: Waljee, Akbar K., et al.
Publicado: (2020) -
Opioid and benzodiazepine prescription among patients with cirrhosis compared to other forms of chronic disease
por: Konerman, Monica A, et al.
Publicado: (2019) -
Adapted time-varying covariates Cox model for predicting future cirrhosis development performs well in a large hepatitis C cohort
por: Beste, Lauren A., et al.
Publicado: (2021) -
Reinforcement learning evaluation of treatment policies for patients with hepatitis C virus
por: Oselio, Brandon, et al.
Publicado: (2022) -
Assessing risk of fibrosis progression and liver-related clinical outcomes among patients with both early stage and advanced chronic hepatitis C
por: Konerman, Monica A., et al.
Publicado: (2017)