Cargando…
The computational prediction of drug-disease interactions using the dual-network L(2,1)-CMF method
BACKGROUND: Predicting drug-disease interactions (DDIs) is time-consuming and expensive. Improving the accuracy of prediction results is necessary, and it is crucial to develop a novel computing technology to predict new DDIs. The existing methods mostly use the construction of heterogeneous network...
Autores principales: | Cui, Zhen, Gao, Ying-Lian, Liu, Jin-Xing, Wang, Juan, Shang, Junliang, Dai, Ling-Yun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6320570/ https://www.ncbi.nlm.nih.gov/pubmed/30611214 http://dx.doi.org/10.1186/s12859-018-2575-6 |
Ejemplares similares
-
L(2,1)-GRMF: an improved graph regularized matrix factorization method to predict drug-target interactions
por: Cui, Zhen, et al.
Publicado: (2019) -
CMF, Chaikin money flow: changes anticipating price reversal
por: Thomsett, Michael C
Publicado: (2011) -
Oxidation of 5-Chloromethylfurfural (CMF) to 2,5-Diformylfuran (DFF)
por: Vicente, Ana I., et al.
Publicado: (2017) -
AO Craniomaxillofacial Surgery (AO CMF): A World of Opportunities
por: Kadam, Dinesh
Publicado: (2020) -
CMF vs alternating CMF/EV in the adjuvant treatment of operable breast cancer. A single centre randomised clinical trial (Naples GUN-3 study).
por: De Placido, S., et al.
Publicado: (1995)