Cargando…

Chlorogenic Acid (CGA) Isomers Alleviate Interleukin 8 (IL-8) Production in Caco-2 Cells by Decreasing Phosphorylation of p38 and Increasing Cell Integrity

The objective of this study was to determine the effect of six chlorogenic acid (CGA) isomers known to be present in coffee and other plant foods on modulating the inflammatory response induced by pro-inflammatory cytokines in the Caco-2 human intestinal epithelial cell line. Compared to caffeoylqui...

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Ningjian, Kitts, David D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6320834/
https://www.ncbi.nlm.nih.gov/pubmed/30518116
http://dx.doi.org/10.3390/ijms19123873
_version_ 1783385298048122880
author Liang, Ningjian
Kitts, David D.
author_facet Liang, Ningjian
Kitts, David D.
author_sort Liang, Ningjian
collection PubMed
description The objective of this study was to determine the effect of six chlorogenic acid (CGA) isomers known to be present in coffee and other plant foods on modulating the inflammatory response induced by pro-inflammatory cytokines in the Caco-2 human intestinal epithelial cell line. Compared to caffeoylquinic acids (CQA), dicaffeoylquinic acids (DiCQA) had significantly stronger (p < 0.05) capacities to reduce phosphorylation of one of mitogen-activated protein kinases (MAPK) cascades, namely p38. Compared to the control, CQA isomers treatment resulted in around 50% reduction in an interleukin-8 (IL-8) secretion, whereas DiCQA, at the same concentration, resulted in a 90% reduction in IL-8 secretion, compared to the control cells. CGA isomer treatment also showed a significant effect (p < 0.05) on the up-regulation of NFκB subunit p65 nuclear translocation by more than 1.5 times, compared to the control. We concluded that CGA isomers exert anti-inflammatory activity in a mixture of interferon gamma (IFNγ) and phorbol myristate acetate (PMA)-challenged Caco-2 cells, by decreasing the phosphorylation of p38 cascade and up-regulating NFκB signaling.
format Online
Article
Text
id pubmed-6320834
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-63208342019-01-07 Chlorogenic Acid (CGA) Isomers Alleviate Interleukin 8 (IL-8) Production in Caco-2 Cells by Decreasing Phosphorylation of p38 and Increasing Cell Integrity Liang, Ningjian Kitts, David D. Int J Mol Sci Article The objective of this study was to determine the effect of six chlorogenic acid (CGA) isomers known to be present in coffee and other plant foods on modulating the inflammatory response induced by pro-inflammatory cytokines in the Caco-2 human intestinal epithelial cell line. Compared to caffeoylquinic acids (CQA), dicaffeoylquinic acids (DiCQA) had significantly stronger (p < 0.05) capacities to reduce phosphorylation of one of mitogen-activated protein kinases (MAPK) cascades, namely p38. Compared to the control, CQA isomers treatment resulted in around 50% reduction in an interleukin-8 (IL-8) secretion, whereas DiCQA, at the same concentration, resulted in a 90% reduction in IL-8 secretion, compared to the control cells. CGA isomer treatment also showed a significant effect (p < 0.05) on the up-regulation of NFκB subunit p65 nuclear translocation by more than 1.5 times, compared to the control. We concluded that CGA isomers exert anti-inflammatory activity in a mixture of interferon gamma (IFNγ) and phorbol myristate acetate (PMA)-challenged Caco-2 cells, by decreasing the phosphorylation of p38 cascade and up-regulating NFκB signaling. MDPI 2018-12-04 /pmc/articles/PMC6320834/ /pubmed/30518116 http://dx.doi.org/10.3390/ijms19123873 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Liang, Ningjian
Kitts, David D.
Chlorogenic Acid (CGA) Isomers Alleviate Interleukin 8 (IL-8) Production in Caco-2 Cells by Decreasing Phosphorylation of p38 and Increasing Cell Integrity
title Chlorogenic Acid (CGA) Isomers Alleviate Interleukin 8 (IL-8) Production in Caco-2 Cells by Decreasing Phosphorylation of p38 and Increasing Cell Integrity
title_full Chlorogenic Acid (CGA) Isomers Alleviate Interleukin 8 (IL-8) Production in Caco-2 Cells by Decreasing Phosphorylation of p38 and Increasing Cell Integrity
title_fullStr Chlorogenic Acid (CGA) Isomers Alleviate Interleukin 8 (IL-8) Production in Caco-2 Cells by Decreasing Phosphorylation of p38 and Increasing Cell Integrity
title_full_unstemmed Chlorogenic Acid (CGA) Isomers Alleviate Interleukin 8 (IL-8) Production in Caco-2 Cells by Decreasing Phosphorylation of p38 and Increasing Cell Integrity
title_short Chlorogenic Acid (CGA) Isomers Alleviate Interleukin 8 (IL-8) Production in Caco-2 Cells by Decreasing Phosphorylation of p38 and Increasing Cell Integrity
title_sort chlorogenic acid (cga) isomers alleviate interleukin 8 (il-8) production in caco-2 cells by decreasing phosphorylation of p38 and increasing cell integrity
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6320834/
https://www.ncbi.nlm.nih.gov/pubmed/30518116
http://dx.doi.org/10.3390/ijms19123873
work_keys_str_mv AT liangningjian chlorogenicacidcgaisomersalleviateinterleukin8il8productionincaco2cellsbydecreasingphosphorylationofp38andincreasingcellintegrity
AT kittsdavidd chlorogenicacidcgaisomersalleviateinterleukin8il8productionincaco2cellsbydecreasingphosphorylationofp38andincreasingcellintegrity