Cargando…
Studies on the Curing Efficiency and Mechanical Properties of Bis-GMA and TEGDMA Nanocomposites Containing Silver Nanoparticles
Bioactive dimethacrylate composites filled with silver nanoparticles (AgNP) might be used in medical applications, such as dental restorations and bone cements. The composition of bisphenol A glycerolate dimethacrylate (Bis-GMA) and triethylene glycol dimethacrylate (TEGDMA) mixed in a 60/40 wt% rat...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6320904/ https://www.ncbi.nlm.nih.gov/pubmed/30544584 http://dx.doi.org/10.3390/ijms19123937 |
Sumario: | Bioactive dimethacrylate composites filled with silver nanoparticles (AgNP) might be used in medical applications, such as dental restorations and bone cements. The composition of bisphenol A glycerolate dimethacrylate (Bis-GMA) and triethylene glycol dimethacrylate (TEGDMA) mixed in a 60/40 wt% ratio was filled from 25 to 5000 ppm of AgNP. An exponential increase in resin viscosity was observed with an increase in AgNP concentration. Curing was performed by way of photopolymerization, room temperature polymerization, and thermal polymerization. The results showed that the polymerization mode determines the degree of conversion (DC), which governs the ultimate mechanical properties of nanocomposites. Thermal polymerization resulted in a higher DC than photo- and room temperature polymerizations. The DC always decreased as AgNP content increased. Flexural strength, flexural modulus, hardness, and impact strength initially increased, as AgNP concentration increased, and then decreased at higher AgNP loadings. This turning point usually occurred when the DC dropped below 65% and moved toward higher AgNP concentrations, according to the following order of polymerization methods: photopolymerization < room temperature polymerization < thermal polymerization. Water sorption (WS) was also determined. Nanocomposites revealed an average decrease of 16% in WS with respect to the neat polymer. AgNP concentration did not significantly affect WS. |
---|