Cargando…

Improving Encapsulation of Hydrophilic Chloroquine Diphosphate into Biodegradable Nanoparticles: A Promising Approach against Herpes Virus Simplex-1 Infection

Chloroquine diphosphate (CQ) is a hydrophilic drug with low entrapment efficiency in hydrophobic nanoparticles (NP). Herpes simplex virus type 1 (HSV-1) is an enveloped double-stranded DNA virus worldwide known as a common human pathogen. This study aims to develop chloroquine-loaded poly(lactic aci...

Descripción completa

Detalles Bibliográficos
Autores principales: Lima, Tábata Loíse Cunha, Feitosa, Renata de Carvalho, dos Santos-Silva, Emanuell, dos Santos-Silva, Alaine Maria, Siqueira, Emerson Michell da Silva, Machado, Paula Renata Lima, Cornélio, Alianda Maira, do Egito, Eryvaldo Sócrates Tabosa, Fernandes-Pedrosa, Matheus de Freitas, Farias, Kleber Juvenal Silva, da Silva-Júnior, Arnóbio Antônio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6320969/
https://www.ncbi.nlm.nih.gov/pubmed/30513856
http://dx.doi.org/10.3390/pharmaceutics10040255
Descripción
Sumario:Chloroquine diphosphate (CQ) is a hydrophilic drug with low entrapment efficiency in hydrophobic nanoparticles (NP). Herpes simplex virus type 1 (HSV-1) is an enveloped double-stranded DNA virus worldwide known as a common human pathogen. This study aims to develop chloroquine-loaded poly(lactic acid) (PLA) nanoparticles (CQ-NP) to improve the chloroquine anti- HSV-1 efficacy. CQ-NP were successfully prepared using a modified emulsification-solvent evaporation method. Physicochemical properties of the NP were monitored using dynamic light scattering, atomic force microscopy, drug loading efficiency, and drug release studies. Spherical nanoparticles were produced with modal diameter of <300 nm, zeta potential of −20 mv and encapsulation efficiency of 64.1%. In vitro assays of CQ-NP performed in Vero E6 cells, using the MTT-assay, revealed different cytotoxicity levels. Blank nanoparticles (B-NP) were biocompatible. Finally, the antiviral activity tested by the plaque reduction assay revealed greater efficacy for CQ-NP compared to CQ at concentrations equal to or lower than 20 µg mL(−1) (p < 0.001). On the other hand, the B-NP had no antiviral activity. The CQ-NP has shown feasible properties and great potential to improve the antiviral activity of drugs.