Cargando…
Adverse Drug Reaction Predictions Using Stacking Deep Heterogeneous Information Network Embedding Approach
Inferring potential adverse drug reactions is an important and challenging task for the drug discovery and healthcare industry. Many previous studies in computational pharmacology have proposed utilizing multi-source drug information to predict drug side effects have and achieved initial success. Ho...
Autores principales: | Hu, Baofang, Wang, Hong, Wang, Lutong, Yuan, Weihua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6320974/ https://www.ncbi.nlm.nih.gov/pubmed/30518099 http://dx.doi.org/10.3390/molecules23123193 |
Ejemplares similares
-
Drug Side-Effect Prediction Via Random Walk on the Signed Heterogeneous Drug Network
por: Hu, Baofang, et al.
Publicado: (2019) -
Large-scale prediction of adverse drug reactions-related proteins with network embedding
por: Park, Jaesub, et al.
Publicado: (2022) -
Prediction of adverse drug reactions based on knowledge graph embedding
por: Zhang, Fei, et al.
Publicado: (2021) -
EEG Feature Selection via Stacked Deep Embedded Regression With Joint Sparsity
por: Jiang, Kui, et al.
Publicado: (2020) -
Deep Stacking Network for Intrusion Detection
por: Tang, Yifan, et al.
Publicado: (2021)