Cargando…
Core-Shell Nanoencapsulation of α-Tocopherol by Blending Sodium Oleate and Rebaudioside A: Preparation, Characterization, and Antioxidant Activity
Nanoencapsulation of α-tocopherol (α-TOC) by blending sodium oleate (NaOl) and rebaudioside A (RebA) was successfully prepared by self-assembly method under mild conditions. The optimized nanoemulsion showed the loading capacity of α-TOC was 30 wt% of sodium oleate. FTIR analysis suggested that hydr...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6321206/ https://www.ncbi.nlm.nih.gov/pubmed/30513920 http://dx.doi.org/10.3390/molecules23123183 |
Sumario: | Nanoencapsulation of α-tocopherol (α-TOC) by blending sodium oleate (NaOl) and rebaudioside A (RebA) was successfully prepared by self-assembly method under mild conditions. The optimized nanoemulsion showed the loading capacity of α-TOC was 30 wt% of sodium oleate. FTIR analysis suggested that hydrogen bonds and hydrophobic interactions were the major forces in α-TOC-NaOl/RebA complexes that were spherical and possessed well-distinguishable core-shell structures. The freeze-dried α-TOC-NaOl/RebA complexes had great stability under ambient conditions. The release profile of α-TOC showed a first-order kinetics reaching around 67.9% after 90 h at 25 °C. Nanoencapsulation improved dispersibility and greatly increased the antioxidant activity of α-TOC. Therefore, the stable α-TOC-NaOl/RebA core-shell complexes prepared from “generally recognized as safe” (GRAS) ingredients have great potential to supplement α-TOC in food and cosmetic products. |
---|